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Abstract 

The relationship between the applied load and the number of repetitions performed to mo-

mentary failure (i.e., the strength-endurance relationship) in a given exercise has repeatedly 

drawn the interest of researchers over the past decades. While this relationship was com-

monly assumed to be virtually identical across individuals and, thus, described by unified 

equations, there is evidence that it may actually differ between individuals. The present 

thesis aimed to investigate the concept of “strength-endurance profiles”, which describe the 

strength-endurance relationship on an individual level. The main objective was to identify a 

model function that yields good descriptive and predictive validity while being robust across 

test-retest trials. Since strength-endurance profiles require the completion of multiple repe-

titions-to-failure tests, the thesis further aimed to compare different strategies for data ac-

quisition to evaluate whether they may be used interchangeably. Based on the findings, it 

was concluded that the individual strength-endurance relationship can be best represented 

by a 2-parameters exponential regression or a reciprocal regression function. Data acqui-

sition should be completed in multiple separate sessions distributed across different days, 

rather than a single session with 22 min breaks in between repetitions-to-failure tests.  

 

Zusammenfassung 

Der Zusammenhang zwischen der bewegten Last und der Anzahl maximal durchführbarer 

Wiederholungen bis zum Muskelversagen (der Kraft-Ausdauer-Zusammenhang) in einer 

bestimmten Übung wurde während der letzten Jahrzehnte wiederholt als Thema der sport-

wissenschaftlichen Forschung aufgegriffen. Während angenommen wurde, dass dieser Zu-

sammenhang für alle Personen annähernd identisch ist und daher durch einheitliche Glei-

chungen beschrieben werden kann, bestehen Hinweise darauf, dass der Zusammenhang 

in Wahrheit individuell ausgeprägt ist und somit zwischen Personen variiert. Die Motivation 

der vorliegenden Dissertation bestand darin, das Konzept von „Kraft-Ausdauer-Profilen“ zu 

erforschen, die den Kraft-Ausdauer-Zusammenhang auf individueller Ebene beschreiben. 

Das Hauptziel war es, eine Modellfunktion zu identifizieren, die gute deskriptive und prädik-

tive Eigenschaften aufweist und in der Abwesenheit von systematischen Änderungen der 

Leistungsfähigkeit robust ist. Da Kraft-Ausdauer-Profile mehrere Tests bis zum Muskelver-

sagen (RTF-Tests) erfordern, zielte die Dissertation außerdem darauf ab, verschiedene 

Strategien für die Datenerhebung zu vergleichen. Basierend auf den Ergebnissen wurde 

der Schluss gezogen, dass der individuelle Kraft-Ausdauer-Zusammenhang am besten 

durch eine 2-Parameter-exponentielle Regression oder eine reziproke Regressionsfunktion 
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dargestellt werden kann. Die Datenerhebung sollte in mehreren separaten Test- bzw. Trai-

ningseinheiten durchgeführt werden, die über verschiedene Tage verteilt sind, und nicht in 

einer einzelnen Einheit mit 22-minütigen Pausen zwischen den RTF-Tests.  
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1 Introduction 

1.1 Strength endurance 

Strength endurance, which is often used interchangeably with the term “local muscular en-

durance” (LME), is considered a major training goal and essential physical quality in various 

sports such as Climbing (Grant et al., 1996), Crossfit® (Gómez-Landero & Frías-Menacho, 

2020; Leitão et al., 2021), Rowing (Kramer et al., 1994; Lawton et al., 2011), Strongman 

(Winwood et al., 2019) and certain combat sports (Chaabene et al., 2017; Santos-Junior & 

Franchini, 2021). However, the pursuit of understanding strength endurance reaches far 

beyond sports that assume it to be a determinant of competitive performance. In the general 

domain of strength and conditioning, current trends suggest that many practitioners aspire 

to quantify proximity to momentary failure to regulate the intensity of effort applied during 

resistance training (Hickmott et al., 2022; Pelland et al., 2022). A better comprehension of 

the strength endurance capacity can facilitate such implementations, as discussed in chap-

ter 1.2.2.2 (“Potential applications of the strength-endurance models”). For a start, the pre-

sent chapter aims to provide the reader with a comprehensive definition of strength endur-

ance and related terms, introduce the current standards used to assess and quantify 

strength endurance, and portray potential psycho-physiological causes associated with 

acute fatigue.  

 

1.1.1 Definition of strength endurance 

Various definitions have been proposed to distinguish strength endurance from other phys-

ical qualities (Table 1). Generally speaking, strength endurance can be described as the 

ability to resist neuromuscular fatigue during the execution of a specific exercise or move-

ment against a submaximal resistance (Deschenes & Kraemer, 2002). Within this frame-

work, some authors suggested two additional definitions of strength endurance based on 

mechanical quantities that apply to specific types of muscle action. Among isometric exer-

cises, strength endurance would then be defined as the ability to maintain a high level of 

muscular force over time (Verkhoshansky & Siff, 2009). For dynamic exercises, on the other 

hand, strength endurance would be primarily described as the ability to produce a large 

amount of concentric work (Lawton et al., 2011; Verkhoshansky & Siff, 2009). In a broader 

sense, this latter definition would pertain to the ability to realize a maximum amount of phys-

ical work within a given time frame or the ability to minimize the time required to produce a 

given amount of physical work, both of which include strategic aspects of optimizing inter-
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posed rest periods. However, throughout this manuscript, strength endurance will be con-

sidered in its most basic form as the ability to maintain force production in a single sustained 

trial, cluster, or set, neglecting recovery processes that would take place between them.  

 

Table 1. Definitions of strength endurance and local muscular endurance  

Source Term Definition 

Deschenes & Kraemer, 
2002, p. 3 

LME “[…] the ability to resist muscular fatigue, particularly 
when using a submaximal resistance […].” 

Haff & Triplett, 2016, p. 261 LME “[…] the ability of certain muscles or muscle groups to 
perform repeated contractions against a submaximal re-
sistance […].” 

Lawton et al., 2011, 
pp. 414–415 

LME 
& SE 

“[…] total concentric work produced over a number of 
repetitions, often within a designated time interval […].” 

Verkhoshansky & Siff, 2009, 
p. 108 

SE “[…] the ability to effectively maintain muscular function-
ing under work conditions of long duration. In sport this 
refers to the ability to produce a certain minimum force 
for a prolonged period. There are different types of mus-
cle functioning associated with this ability, such as hold-
ing a given position or posture (static strength-endur-
ance), maintaining cyclic work of various intensities (dy-
namic strength-endurance) or repetitively executing ex-
plosive effort (explosive strength-endurance) […].” 

Zatsiorsky & Kraemer, 2006, 
p. 180 

LME 
& SE 

“The ability to produce multiple muscular contractions at 
different percentages of maximum […].” 

LME, local muscular endurance; SE, strength endurance. 

 

1.1.2 Assessment of strength endurance 

Strength endurance can be expressed through different physical attributes depending on 

the type of muscle action performed and the available diagnostic technology, leading to 

various tests proposed in the scientific literature. Amongst them, Milner-Brown et al. (1986) 

proposed that muscle endurance could be quantified based on kinetic assessment in two 

ways: as the Force-Time Integral (FTI) or as the Fatigue Index (FI). The first can be calcu-

lated as the area under the force-time curve for a given time interval and expressed as a 

factor of body mass (BM):  

𝐹𝑇𝐼 [𝑁𝑠 𝑘𝑔−1] = 𝐵𝑀−1∫𝐹 𝑑𝑡  (1) 

The second, in turn, can be calculated as the reduction in maximum force produced up to 

a certain time point (Fi - Fn) relative to the initial maximum force produced (Fi):  

𝐹𝐼 [%] = 100 
𝐹𝑖 − 𝐹𝑛
𝐹𝑖

  (2) 
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Milner-Brown et al. (1986) suggested these two variables in the context of isometric exer-

cises, ultimately linking them to the definition of static strength endurance formulated by 

Verkhoshansky and Siff (2009). It follows then that dynamic strength endurance could be 

quantified as the mechanical work (W) produced, which is expressed mathematically as the 

integral of force over a certain distance (s):  

𝑊 [𝑁𝑚] = ∫𝐹 𝑑𝑠 (3) 

While these approaches relate closely to proposed mechanical definitions of strength en-

durance, they require access to specific technology for assessing force production. How-

ever, such tools are typically unavailable to practitioners. Therefore, research focusing on 

an audience of applied practitioners commonly resorts to using variables that can be easily 

assessed without expensive equipment. Such variables constitute approximations of the 

mechanistic definitions of strength endurance described in the previous section and pertain 

to specific types of muscle actions.  

In isometric exercises like the front hold (i.e., holding an external load at shoulder height 

with extended elbows) or dynamic exercises featuring a constant cadence in a cyclic move-

ment like tempo squats (i.e., squats with a prescribed duration for eccentric, concentric, and 

isometric movement phases), strength endurance may be assessed as the time (tlim) the 

exercise can be sustained under predetermined conditions (Ansdell et al., 2019; Arakelian 

et al., 2017). In the two examples mentioned above, such conditions might encompass 

holding the external load at a certain angle of glenohumeral flexion in the front hold exercise 

or maintaining a target movement cadence or movement technique in the tempo squat.  

In dynamic exercises, strength endurance is typically reflected by the number of repetitions 

that can be performed before reaching momentary failure (RTF), hence not being able to 

complete the concentric phase of another repetition without deviating from predetermined 

conditions (Steele, Fisher, et al., 2017). Such conditions may include the ability to maintain 

a given movement cadence or the ability to maintain a given exercise technique. In the 

deadlift, for example, momentary failure could be interpreted as the point at which excessive 

rounding of the lower back occurs (Dinyer, Byrd, Vesotsky, Succi, & Bergstrom, 2019). In 

the pull-up, on the other hand, momentary failure could be associated with the inability to 

complete another repetition across the full range of motion, starting with fully extended el-

bows and pulling the hyoid bone to the level of the bar or above (LaChance & Hortobagyi, 

1994). Importantly, these predetermined criteria would not exclude the possibility that after 

reaching momentary failure, more repetitions could be performed with an undesirable exer-

cise technique (i.e., a rounded lower back in the deadlift or a reduced range of motion in 
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the pull-up). Assessments of dynamic strength-endurance by RTF (i.e., RTF tests) are typ-

ically referred to as repetition maximum tests or repetition endurance tests (Lawton et al., 

2011).  

The previously described variables are typically determined under standardized conditions 

to compare strength endurance within and between individuals. In exercises with isoinertial 

loading (i.e., when exercising against a constant external load), research has promoted two 

different approaches to standardization: first, the absolute strength endurance can be tested 

against a fixed load, which is predominantly expressed in a unit of mass like kg or lbs (An-

derson & Kearney, 1982; Hackett et al., 2022; Johnson et al., 2009; Ratamess et al., 2009; 

Schoenfeld et al., 2021; M. H. Stone et al., 2006; W. J. Stone & Coulter, 1994). A popular 

field test for absolute strength endurance is the NFL-225 test, which is commonly applied 

in the National Football League (NFL) Combine and requires the athlete to perform repeti-

tions to momentary failure in the bench press exercise at a load of 225 lbs or 102.3 kg 

(Mann et al., 2012; Mayhew et al., 1999). Second, the relative strength endurance can be 

tested against a fixed percentage of a reference load. Typically, relative loads are ex-

pressed as a percentage of the individual’s one-repetition maximum (1-RM) load or as a 

percentage of the individual’s body mass (Anderson & Kearney, 1982; Hackett et al., 2022; 

Johnson et al., 2009; Ratamess et al., 2009; Schoenfeld et al., 2021; M. H. Stone et al., 

2006; W. J. Stone & Coulter, 1994).  

Notably, research has distinguished two methodological strategies when testing relative 

strength endurance at a given percentage of the 1-RM to evaluate the longitudinal develop-

ment of strength endurance within an individual over time. On the one hand, the used load 

could be expressed relative to the pre-intervention 1-RM (1-RMPRE) and maintained for sub-

sequent tests. On the other hand, relative loads could be adjusted continuously to any 

emerging changes on the 1-RM (1-RMPOST) across the training process (Fisher et al., 2020; 

Hackett et al., 2022; Schoenfeld et al., 2021). Naturally, the second approach would require 

an initial 1-RM test before each assessment of relative strength endurance to warrant valid 

and reliable results.  

 

1.1.3 Fatigue in resistance training 

As described in section 1.1.1, strength endurance can be interpreted as the ability to main-

tain neuromuscular control and muscle function in the presence of accumulated exercise-

induced fatigue. Thus, understanding causal psycho-physiological pathways and biome-

chanical consequences of fatigue during sustained resistive exercise and how they affect 

neuromuscular control and muscle function may help explain certain systemic phenomena 
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outlined in the present manuscript. For that reason, the following section will provide the 

reader with a brief summary of the current knowledge concerning neuromuscular fatigue in 

resistance training.  

 

1.1.3.1 Definitions of fatigue and exhaustion 

Exercise-induced fatigue is typically described as a reversible loss of maximal muscular 

performance (i.e., force- or power-generating capacity) during prolonged physical tasks (Al-

len et al., 2008; Armes et al., 2020; Enoka & Duchateau, 2008; Finsterer, 2012; Gandevia, 

2001; Halperin et al., 2021; Meeusen et al., 2006; Piqueras-Sanchiz et al., 2021; Westerb-

lad et al., 2002). Notably, MacIntosh and Rassier (2002) criticized this established definition 

of fatigue because it did not account for the phenomenon of low- and high-frequency fatigue, 

according to which contractile function can be diminished selectively at specific stimulation 

frequencies. The authors proposed an alternative definition, describing fatigue as “[…] a 

response that is less than the expected or anticipated contractile response, for a given stim-

ulation […]” (MacIntosh & Rassier, 2002, p. 44). Therefore, exercise-induced fatigue can be 

generalized as a reversible loss of contractile function resulting from physical activity.  

Based on this last definition, exercise-induced fatigue differs conceptually from muscle dam-

age (syn., muscle injury), which also results in a loss of contractile function, but typically 

requires longer periods of recovery to be restored (Allen et al., 2008; Finsterer, 2012). How-

ever, it is challenging to differentiate between fatigue and muscle damage solely based on 

the time course of impaired muscle function since there have also been reports of a slowly 

reversible component of fatigue (Edwards et al., 1977). Rather, fatigue and muscle damage 

can be better distinguished based on their effect on myofibrillar structures. Specifically, 

muscle damage is linked to structural alterations, including sarcomere disorder and mem-

brane disruption, which are not necessarily present in a fatigued condition (Allen et al., 

2008). Furthermore, muscle damage may occur without physical activity due to other trau-

matic events, such as contusions (Finsterer, 2012).  

Exhaustion represents another term that is commonly used in association with fatigue, and 

therefore requires a clear definition and substantial distinction. Allen and colleagues (2008) 

proposed that exhaustion should be interpreted as the “[…] failure to be able to continue 

the activity at the original intensity […]” (p. 288). Therefore, the term may be understood 

synonymously with task failure or momentary failure, which marks a distinct point during a 

continuous or repetitive exercise bout, whereas fatigue describes a continuous process 

(Cairns et al., 2005; Steele, Fisher, et al., 2017).  
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1.1.3.2 Classification of fatigue 

Scientific literature usually proposes two categorizations of exercise-induced fatigue. The 

first categorization distinguishes fatigue according to the affected frequency of innervation 

or stimulation (i.e., low- vs. high-frequency fatigue). The second, in turn, determines fatigue 

according to its causal origin in the neuromuscular system (i.e., central vs. peripheral fa-

tigue).  

MacIntosh and Rassier (2002) described low-frequency fatigue (LFF) as a physiological 

state where “[…] the contractile response to low frequency stimulation is diminished while 

at the same time, the response to high frequency stimulation is not affected […]” (p. 44). 

Importantly, LFF is not exclusively associated with fatiguing activities performed at low mo-

tor unit discharge rates but has been reported to result from various stimulation frequencies 

ranging from 10 to 100 Hz (Keeton & Binder-Macleod, 2006). To avoid misinterpretation, 

Allen et al. (2008)  proposed the alternative term prolonged low-frequency force depression. 

Indeed, LFF is typically characterized by a slower recovery process, taking several hours 

or even days to fully recover (Edwards et al., 1977). On the other hand, high-frequency 

fatigue (HFF) has been defined as a pronounced loss of force at high stimulation frequen-

cies (Allen et al., 2008). According to Jones (1996), HFF is characterized by a reduced 

amplitude and a slower waveform of the muscle fiber action potential, which can be rapidly 

restored once the muscle stimulation frequency is reduced below a certain threshold. How-

ever, the authors question whether HFF contributes to conventional mechanisms of exer-

cise-induced fatigue since voluntary contractions are believed to plateau at a motor unit 

firing rate of around 30 Hz. In contrast, HFF has been predominantly reported in response 

to evoked contractions at much higher frequencies. Furthermore, sustained voluntary con-

tractions have been shown to only minimally affect the waveform of action potentials (Jones, 

1996).  

Exercise-induced fatigue has also been commonly classified according to where its causal 

processes originate. Typically, literature applies the category of central fatigue to processes 

leading to an impairment in the neural drive on the spinal or supraspinal (cerebral) level, 

while peripheral fatigue is used to describe cellular mechanisms distal to the neuromuscular 

junction (Gandevia, 2001; Kataoka et al., 2022; Meeusen et al., 2006). Therefore, peripheral 

fatigue is not considered to be associated with voluntary muscle activation (Gandevia, 2001) 

but rather with the depletion of high-energy substrates, the accumulation of metabolites, or 

a combination of both (Kataoka et al., 2022). However, as outlined by numerous authors, 

central and peripheral fatigue typically coexist (Nybo & Secher, 2004; Ruotsalainen et al., 

2014; Thomas et al., 2018) and may mutually affect one another (Meeusen et al., 2006). 
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For example, it has been suggested that during peripheral fatigue processes, certain met-

abolic products may stimulate receptors innervated by group III and IV nerve afferents and, 

consequently, affect central motor drive (Barry & Enoka, 2007; Davis & Bailey, 1997; Enoka 

& Duchateau, 2008; Gandevia, 2001; Laurin et al., 2015; Westerblad et al., 2002; Zając et 

al., 2015).  

  

 

Y-axes of line graphs display performance as an 

unspecified arbitrary variable. Fatigue develop-

ment was simplified as a linearly decreasing trend 

(black dashed lines). For reference, the grey 

dashed line represents fatigue development in set 

1, performed under fully rested conditions. A, in-

tra-set fatigue; B, inter-set fatigue. 

 

While the categorizations mentioned above focus on physiological mechanisms, some au-

thors have also considered a more phenomenological approach to classify fatigue based 

on its occurrence within the structure of a resistance training program (Figure 1). This clas-

sification distinguishes between intra-set fatigue and inter-set fatigue. Carneiro et al. (2020) 

described intra-set fatigue as the “[…] acute decline of technical proficiency and of move-

ment force and velocity from first to last repetition […]” during a training set (p. 239.e2). 

Therefore, it defines decrements of performance (e.g., movement velocity, power output) in 

a single sustained or repetitive trial, excluding regenerative processes that may occur during 

Repetitions 

S
e
ts

 

Set 1 ○A  

 

⋮ 

Set n ○B  

 

Figure 1. Dimensions of exercise-induced fatigue. 
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interposed rest periods between trials. Consequently, intra-set fatigue is causally associ-

ated with momentary failure. Inter-set fatigue, on the other hand, could be described as a 

loss in performance happening across a multitude of sets or trials, which can be expressed 

under standardized conditions as the reduced ability to maintain high levels of maximum 

voluntary movement velocity or mechanical power (Fonseca et al., 2020; Morán-Navarro et 

al., 2017; Pareja-Blanco et al., 2019; Pareja-Blanco, Rodríguez-Rosell, et al., 2020; Pár-

raga-Montilla et al., 2020; Piqueras-Sanchiz et al., 2021; Sánchez-Medina & González-Ba-

dillo, 2011), the reduced ability to produce high levels of force (Piqueras-Sanchiz et al., 

2021), or as the reduced capacity to perform physical work (Salles et al., 2009) during sub-

sequent sets. Compared to intra-set fatigue, inter-set fatigue may depend on additional fac-

tors, such as total training volume, rest duration between sets, and recovery rates (Salles 

et al., 2009). Importantly, intra-set and inter-set fatigue may arise at different magnitudes 

during the same training session. However, evidence supports a causal relationship, where 

higher levels of intra-set fatigue promote higher levels of inter-set fatigue during subsequent 

sets (Gorostiaga et al., 2012; Gorostiaga et al., 2014).  

 

1.1.3.3 Peripheral and central mechanisms of fatigue 

The initiation and regulation of voluntary human movement are considered complex proce-

dures of processing and transmitting signals between different physiological systems. They 

include the central nervous system (i.e., cerebral cortex, thalamus, basal ganglia, cerebel-

lum, brain stem, spinal cord), the peripheral motoneuron, the neuromuscular junction, sar-

colemma, t-tubules, sarcoplasmic reticulum, and the cross-bridge cycle of myofilaments 

(Figure 2). It has been suggested that fatigue could be caused at any point along this path-

way, with peripheral and central mechanisms affecting four main processes in the signal 

chain. First, fatigue mechanisms could affect the targeted recruitment of motor units. Sec-

ond, they could affect the discharge rate of motor units by interfering with the propagation 

of action potentials in the central and peripheral nervous system and along the sarcolemma. 

Third, they could impede excitation-contraction coupling by compromising cytoplasmic cal-

cium (Ca2+) concentration or reducing myofibrillar Ca2+ sensitivity, both of which are consid-

ered crucial since Ca2+ binding to troponin C facilitates the cross-bridge cycling of myosin 

on actin. Fourth, fatiguing mechanisms could directly affect force production at the cross-

bridge level.  
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Figure 2. Schematic summary of physiological systems involved in voluntary 

skeletal muscle contraction and fatigue. 

Adapted from “Cross-bridge Cycle” by BioRender.com (2022). Retrieved from 

https://app.biorender.com/biorender-templates.  

https://app.biorender.com/biorender-templates
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Exercise-induced fatigue is likely the result of multiple effects emerging simultaneously or 

in overlapping series (Allen et al., 2008). The objective of the following section will be to 

provide an overview of proposed biological mechanisms causing intra-set fatigue and, 

therefore, influence strength endurance.  

 

Peripheral mechanisms: depletion theory 

Energy metabolism in resistance training 

Many cellular processes which are associated with muscle contraction, such as cross-

bridge cycling or control of intracellular Ca2+ concentration, require adenosine triphosphate 

(ATP) as a source of energy (Allen et al., 2008). This energy is stored within the ATP mol-

ecule in the form of binding energy and can be released through the decomposition (i.e., 

hydrolysis) of ATP into adenosine diphosphate (ADP) and an inorganic phosphate ion (Pi
 

or PO4
3-), using ATPase enzymes as a catalyst (Fitts, 1994):  

𝐴𝑇𝑃 + 𝐻2𝑂 → 𝐴𝐷𝑃 + 𝑃𝑖 +𝐻
+ + 𝑒𝑛𝑒𝑟𝑔𝑦 (4) 

During muscular activity, a permanent demand for energy must be met, which increases 

with the intensity and duration of the activity. This demand requires ATP to be continuously 

resynthesized to balance ATP utilization. While, in general, ATP can be produced from var-

ious metabolic processes under aerobic and anaerobic conditions, resistance training en-

ergy demand is typically fueled by the anaerobic energy metabolism (C. B. Scott et al., 

2011; Vianna et al., 2011). This hypothesis is supported by research showing that muscles 

tend to perform under hypoxic conditions during resistance exercise, especially when dy-

namic exercises are completed with prolonged continuous muscular tension (Tanimoto & 

Ishii, 2006; Zając et al., 2015).  

Initially, the anaerobic resynthesis of ATP is accomplished by the conversion of phospho-

creatine (PCr) and ADP to ATP by the enzyme creatine kinase (Fitts, 1994):  

𝑃𝐶𝑟 + 𝐴𝐷𝑃 + 𝐻+ → 𝐶𝑟 + 𝐴𝑇𝑃 (5) 

As the resistance exercise bout continues, the recovery of ATP through PCr is progressively 

supported by processes using other high-energy substrates, most notably anaerobic glycol-

ysis (Bandy et al., 1990). Anaerobic glycolysis is a multi-step process and is therefore con-

sidered to contribute to the resynthesis of ATP at a substantially lower rate compared to 

PCr (Sahlin, 2014). The reaction can be summarized using the following equation (Brooks 

et al., 2005):  

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 + 2 𝐴𝐷𝑃 + 2 𝑃𝑖 → 2 𝐴𝑇𝑃 + 2 𝐿𝑎𝑐𝑡𝑎𝑡𝑒 + 2 𝐻
+ (6) 
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Due to ADP being phosphorylated with the help of PCr and Glycogen, ATP levels remain 

relatively stable during the primary phase of high-intensity muscular activity. At the same 

time, a reduction in PCr levels and a rise in free creatine (Cr) and Pi can be experienced 

(Gorostiaga et al., 2010; Gorostiaga et al., 2012; Jones et al., 2009). Once PCr reaches a 

certain lower threshold, ATP concentration eventually starts to fall, resulting in a rise in ADP 

concentration, as suggested by eq. 4 (Allen et al., 2008). This increase in ADP facilitates 

another dephosphorylation process, which converts two ADP molecules into one ATP and 

one adenosine monophosphate (AMP) molecule by the enzyme adenylate kinase (Fitts, 

1994):  

2𝐴𝐷𝑃 → 𝐴𝑀𝑃 + 𝐴𝑇𝑃 (7) 

AMP can then be deaminated into inosine monophosphate (IMP) and ammonia (NH3) by 

the enzyme AMP deaminase:  

𝐴𝑀𝑃 → 𝐼𝑀𝑃 + 𝑁𝐻3 (8) 

This final step in the adenine nucleotide metabolism is thought to facilitate energy supply 

by keeping the ATP:ADP ratio constant and, hence, maintaining the phosphorylation poten-

tial elevated (Sahlin & Broberg, 1990). As a consequence, the rate of ADP consumption by 

anaerobic glycolysis would be reduced, delaying the acidosis of active muscles (Korzen-

iewski, 2006).  

 

Adenosine Triphosphate 

While a cumulative loss of locally available ATP could be considered a straightforward ex-

planation for fatigue, the causal role of lowered ATP resynthesis rates is still under debate. 

According to Allen et al. (2008), cytoplasmic ATP concentration does not drop below ~60% 

of its resting level during stimulated contractions or voluntary exercise. Furthermore, it has 

been suggested that muscles stimulated at a constant frequency may experience a loss in 

force without any accompanying changes in ATP levels (Jones et al., 2009). Likewise, 

Gorostiaga et al. (2010) did not find significant changes in adenine nucleotide concentra-

tions following a 10-RM set in the leg press. However, significant reductions in ATP have 

been reported when performing three sets at 10-RM separated by 2 min of rest (Gorostiaga 

et al., 2012) or after three sets of 30 repetitions at 180°·s-1 using an isokinetic dynamometer 

(Jansson et al., 1987). Similar effects have been reported for the knee extension exercise 

performed to failure, with exercise duration ranging from roughly 2 to 5 min (Gorostiaga et 

al., 2012). Therefore, it is possible that the depletion of ATP may be a limiting factor through-
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out multiple sustained efforts or when higher training volumes are performed close to mo-

mentary failure. However, the same may not necessarily be valid during the performance 

of single sets at high loads.  

 

Creatine phosphate 

Decreased PCr availability may contribute to the development of fatigue during high-inten-

sity resistance exercise, given that it provides a higher rate of ATP supply compared to 

anaerobic glycolysis (Sahlin, 2014). However, similar to ATP, PCr is not entirely depleted 

after single sets performed to failure. For instance, MacDougall et al. (1999) investigated 

changes in PCr concentration from biopsies of the biceps brachii muscle following either 

one or three sets of arm curls performed to failure at 80% 1-RM and interposed with 3-min 

rest intervals. The authors reported a 62% and 50% decrease in PCr concentration com-

pared to pre-exercise conditions, respectively. Similarly, Gorostiaga et al. (2010) found that 

PCr concentration was reduced to 38% of its resting level in the vastus lateralis following 

ten repetitions in the leg press performed at the previously determined 10-RM load. PCr 

concentration dropped even further, to about 15% of its resting level, after performing five 

sets of ten repetitions at the 10-RM load (Gorostiaga et al., 2012). Taken together, the evi-

dence discussed so far suggests that intra-set fatigue is not mediated by the depletion of 

ATP and, hence, not impacted by changes in ATP resynthesis rates using PCr. Notwith-

standing this, caution should be taken as several methodological limitations could poten-

tially bias these findings. Such limitations include, for example, the elapsed time between 

exercise termination and freezing of the biopsy tissue samples. Despite authors reporting 

these time intervals to be relatively short [e.g., 5-10 s in Gorostiaga et al. (2010) or 17 ± 5 

s in MacDougall et al. (1999)], they give room for high-rate metabolic processes that could 

potentially confound measurements. Furthermore, creatine phosphate may also contribute 

indirectly to exercise-induced fatigue through another mechanism that will be addressed in 

the section on inorganic phosphate.  

 

Glycogen 

The contribution of glycogen to ATP resynthesis increases with the duration of muscular 

activity and, therefore, as the number of repetitions performed increases (Sahlin, 2014). 

Indeed, research has shown that intramuscular glycogen is significantly depleted over the 

course of multiple consecutive sets performed to failure (Hokken et al., 2021; MacDougall 

et al., 1999; R. W. Morton et al., 2019; Pascoe et al., 1993; Roy & Tarnopolsky, 1998; 

Wilburn et al., 2020). However, MacDougall et al. (1999) noted that after a single set of arm 
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curls performed to failure at 80% 1-RM, there was only a non-significant 12% decrease in 

intramuscular glycogen. Thus, available evidence suggests that intra-set fatigue is likely not 

limited by glycogen depletion at higher loads. While it cannot be excluded that glycogen 

availability may play a role in sets performed to failure at very light loads, it may not be easy 

to causally attribute any potential effects to glycogen depletion per se. These effects might 

also be explained by the accumulation of specific metabolites formed during anaerobic gly-

colysis, which will be addressed in the following sections.  

 

Peripheral mechanisms: accumulation theory 

Potassium 

Potassium (K+) plays an essential role in the regulation of membrane potential in combina-

tion with other ions, most importantly Sodium (Na+) and Chloride (Cl-). During muscle exci-

tation, the efflux of K+ into the extracellular space repolarizes the cell after voltage-gated 

ion channels cause depolarization through the facilitation of Na+ influx, allowing action po-

tentials to be propagated along neurons, the sarcolemma, and t-tubules. Research has 

shown that during repeated stimulation of muscles, extracellular K+ increases substantially, 

particularly in the t-tubules of muscle cells. Allen et al. (2008) suggested that this may be 

due to inadequate compensation by Na+-K+ pumps and might potentially reduce muscle 

excitability during prolonged physical activity. The authors’ theory is supported by studies 

showing a decrease in M-wave amplitude following a local fatiguing protocol (Froyd et al., 

2018; Stutzig & Siebert, 2017). Nevertheless, many studies also reported that declines in 

force or twitch response related to exercise-induced fatigue were not accompanied by a 

systematically decreased M-wave. These results suggest that muscle excitability at the sar-

colemma might not contribute to fatigue-related changes in performance (Baker et al., 1993; 

Bigland-Ritchie, Cafarelli, & Vøllestad, 1986; Bigland-Ritchie, Furbush, & Woods, 1986; 

Rozand et al., 2015; Souron et al., 2020; West et al., 1996). The lack of consensus in the 

literature may be partially attributed to methodological differences among studies, which 

cause heterogeneity in certain factors that have been reported to influence the magnitude 

of recorded fatigue. Such factors include the delay between exercise termination and as-

sessment of neuromuscular function, the intensity of stimulation, and the analytical method 

used to quantify fatigue (Place & Millet, 2020).  

It should also be noted that fatiguing protocols typically involve repeated submaximal acti-

vation bouts with short interposed rest periods. This methodological approach may affect 

recorded fatigue to some degree, as Allen et al. (2008) proposed that excitation failure is 

most likely to occur during continuous, high-frequency stimulation. Moreover, the elevated 
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extracellular K+ concentration during fatigue might also affect performance through path-

ways other than muscle excitability. For example, Lindinger and Cairns (2021) suggested 

that elevated K+ levels might stimulate receptors associated with group III and IV muscle 

afferents. This stimulation, in turn, could elevate the sensation of pain and the perceived 

effort, thus potentially contributing to central fatigue processes. Based on the available ev-

idence, the role of K+ during intra-set fatigue remains unclear. Further research is required 

on sustained high-intensity exercise bouts to clarify the role of K+ and muscle excitability 

during acute fatigue or neuromuscular exhaustion.  

 

Inorganic phosphate 

The accumulation of inorganic phosphate (Pi
 or PO4

3-) is the net result of an increase in ATP 

hydrolysis and resynthesis through PCr (as portrayed in eq. 4 and eq. 5). While the resyn-

thesis of ATP involving processes such as anaerobic glycolysis (eq. 6) may utilize free Pi to 

some degree, prolonged exercise is typically characterized by a continuous increase in Pi 

(Baker et al., 1993; Gorostiaga et al., 2010; Jones et al., 2009; Sinoway et al., 1992). It has 

been suggested that increased Pi levels may affect muscle contractile properties through 

various pathways. First, a direct effect on cross-bridge force production has been assumed. 

This could explain the decrease in evoked tetanic force observed during the initial phase of 

fatigue when myofibrillar Ca2+ levels still increase in response to neural activation or stimu-

lation. Second, Pi may negatively affect myofibrillar Ca2+ sensitivity and, therefore, contrib-

ute to later phases of fatigue, when the loss in tetanic force is typically accompanied by a 

decreased Ca2+ level. Third, Pi may enter the sarcoplasmic reticulum, potentially leading to 

the precipitation of calcium phosphate (Ca2+-Pi) as a consequence of exceeding the Ca2+-

Pi solubility product, reducing the amount of free Ca2+ that could be released into the cyto-

plasm (Allen et al., 2008; Fitts, 2008; Westerblad et al., 2010). Despite the evidence pointing 

to a role of Pi in fatigue, the extent to which Pi contributes to exercise-induced fatigue in vivo 

is still not well understood. In fact, most of the previously mentioned mechanisms have 

predominantly been investigated at unphysiologically low temperatures. In addition, evi-

dence hints towards temperature being a substantial confounding factor to the inhibitory 

effects of Pi, with less inhibition being present at 30°C compared to 15°C (Debold et al., 

2004). Thus, the role of Pi remains unclear in the context of intra-set fatigue in resistance 

training.  
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Hydrogen 

An increase in intracellular hydrogen (H+) concentration can result from different metabolic 

processes that occur during sustained or repeated muscular contractions, most notably the 

hydrolysis of ATP (eq. 4) and its dissociation from lactic acid (La) during anaerobic glycoly-

sis (eq. 6). A rise in H+ is associated with a decreased intramuscular pH level and is thought 

to negatively affect the rate of ATP hydrolysis since ATPase activity responds sensitive to 

decreases in pH (Keyser, 2010). As a result, a rise in H+ hinders cross-bridge cycling and 

the activity of ATP-dependent Na+-K+ pumps and Ca2+ pumps, leading to reduced contrac-

tion force. Furthermore, it has been suggested that low pH levels could have a detrimental 

effect on the contractile apparatus of skeletal muscle (Fabiato & Fabiato, 1978; Westerblad 

& Allen, 1993). This effect, however, is considered to be of less relevance to fatigue mech-

anisms, given the reduced Ca2+ pump activity attributed to low pH levels, which helps to 

maintain a high myofibrillar Ca2+ concentration (Wolosker et al., 1997). Overall, an acidic 

environment favors high levels of free Ca2+ in the cytoplasm (Westerblad & Allen, 1993). 

Indeed, evidence suggests that under physiological temperatures, low pH levels are likely 

less inhibitory to muscle function than previously assumed and might actually potentiate 

force development under certain conditions (Allen et al., 2008; Westerblad et al., 2002).  

Low pH levels have also been suggested to contribute to fatigue through central processes. 

Previously, Westerblad et al. (2002) proposed that extracellular acidosis may stimulate re-

ceptors innervating group III and IV nerve afferents, which may partially increase the sen-

sation of discomfort during exercise-induced fatigue. Group III and IV nerve afferents have 

also been reported to regulate central motor drive through spinal and supraspinal mecha-

nisms, which affect voluntary muscle activation (Laurin et al., 2015).  

Notably, resistance training has been suggested to cause adaptations in processes respon-

sible for regulating H+ concentration. Sinoway et al. (1992) reported that bodybuilders ex-

perienced a significantly lower reduction in intramuscular pH levels compared to “normal” 

participants with lower muscle volume and maximum voluntary contraction (MVC) strength 

following a standardized fatiguing protocol. However, since the authors’ experimental de-

sign did not account for actual training-induced changes in fatiguability, these conclusions 

should be taken with caution.  

 

Ammonia 

As described in eq. 8, ammonia (NH3) is a product of the deamination of AMP. However, 

NH3 can also result from the deamination of branched-chain amino acids (BCAA), primarily 

during reduced glycogen availability, hyperthermia, and ingestion of BCAA (Meeusen et al., 
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2006). Increases in plasma NH3 concentrations have typically been associated with high-

intensity exercise, hypoxic conditions, and low glycogen levels (Sahlin & Broberg, 1990). In 

resistance training, there is evidence that plasma NH3 may rise with increased volume and 

proximity to voluntary failure, ultimately linking it to fatigue (Gorostiaga et al., 2014; 

Sánchez-Medina & González-Badillo, 2011). However, the causal pathways between NH3 

and exercise-induced fatigue are not yet fully understood. It has been suggested that since 

NH3 can cross the blood-brain barrier, it could potentially affect the cerebral function and, 

as a result, induce central fatigue. Indeed, hyperammonemia has been reported to impair 

cerebral blood flow, brain energy metabolism, astrocyte function, synaptic transmission, and 

the regulation of neurotransmitters (Felipo & Butterworth, 2002). Nevertheless, the cerebral 

influx of NH3 originating from active muscle fibers would require sustained blood circulation 

to allow NH3 to be “washed out” of active muscles. Yet, research suggests that the perfor-

mance of high-intensity contractions may impair local circulation above a certain magnitude 

of intramuscular pressure (Barnes, 1980; Sadamoto et al., 1983; Sejersted et al., 1984; 

Zwarts & Arendt-Nielsen, 1988). Thus, the causal effect of NH3 originating from active mus-

cles on the acute fatigue observed during a single sustained high-intensity effort is ques-

tionable, whereas NH3 may contribute to the accumulated fatigue resulting from the repeti-

tion of high-intensity efforts (e.g., multiple sets performed with interposed rest periods). For 

example, Graham et al. (1990) reported a significant rise in plasma NH3 during sustained 

knee extensions to exhaustion, which further increased over the first few minutes after ex-

ercise cessation and returned to resting levels after 20-30 min. Therefore, it could be as-

sumed that NH3 may progressively accumulate during a typical resistance training session 

when sets are performed close to momentary failure.  

 

Reactive Oxygen Species 

Reactive oxygen species (ROS) are unstable molecules and ions that contain oxygen, such 

as superoxide anions (O2
•-), hydrogen peroxide (H2O2), and hydroxyl radicals (OH•). Since 

they contain an unpaired electron, ROS are highly reactive and facilitate oxidative reactions, 

predominantly with proteins, lipids, and DNA, leading to oxidative stress and muscle dam-

age (Nikolaidis et al., 2008; Steinbacher & Eckl, 2015). Indeed, ROS are considered to 

result from various reactions, all of which may be facilitated during strenuous muscular con-

tractions and at increased temperatures (Allen et al., 2008). In experimental research, they 

have commonly been associated with exercise-induced fatigue. For example, ROS scav-

engers, such as N-acetyl-cysteine (NAC), have repeatedly been shown to delay or reverse 

fatigue effects in vitro and in vivo (Allen et al., 2008; Ismaeel et al., 2019; Reid, 2016). 
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Moreover, it has been suggested that ROS may inhibit Ca2+-activated force production, de-

crease Ca2+ sensitivity, and compromise sarcoplasmic reticulum Ca2+ pumping activity 

within muscle cells. Importantly, these effects have been primarily documented in response 

to longer exposures to ROS, which do not reflect the typical time scale of a single set in 

resistance training (Allen et al., 2008; Reid et al., 1993). It should also be noted that oxida-

tive stress markers commonly display a delayed response to strenuous exercise by several 

hours or even days (Nikolaidis et al., 2008).  

Unfortunately, experimental research on oxidative stress in resistance training has not in-

vestigated the effects of single sets yet, but rather focused changes over entire training 

sessions or exercise complexes. For example, Bloomer et al. (2006) found no significant 

increases in plasma protein carbonyl or malondialdehyde levels after about six sets of 

squats performed to momentary failure at 70% 1-RM. In contrast, Goldfarb et al. (2008) 

identified systematic changes in blood protein carbonyls and glutathione levels following 

three sets of biceps curls and calf extensions performed to failure at 70% 1-RM. Moreover, 

Deminice et al. (2010) found significant increases in three of six oxidative stress biomarkers 

following a resistance training session involving six exercises performed for three sets of 

ten repetitions at 75% 1-RM. Due to the lack of research investigating the acute effects of 

single sets on ROS accumulation and associated fatigue effects in vivo, it is difficult to eval-

uate whether ROS may influence exercise-induced intra-set fatigue and account for heter-

ogeneity in strength endurance. Based on the results discussed so far, ROS might play a 

minor role during intra-set fatigue in resistance training. However, ROS may be a substantial 

factor influencing inter-set fatigue mechanisms during and across entire exercise sessions.  

 

Central mechanisms 

Compared to peripheral fatigue, central mechanisms are predominantly subjected to sys-

temic rather than molecular explanations. Overall, the main mechanisms considered re-

sponsible for central fatigue are the inhibition of motoneuron excitability and the reduction 

in (voluntary) corticospinal impulses, which lead to a decreased number of recruited motor 

units and a decrease in motoneuron firing rate (Davis & Bailey, 1997; Gandevia, 2001). As 

previously described, the inhibition of motoneuron excitability has been associated with 

feedback from group III and IV nerve afferents (see sections “Potassium” and “Hydrogen”), 

which are activated based on the muscle’s mechanical condition and its metabolic environ-

ment (Barry & Enoka, 2007; Enoka & Duchateau, 2008; Gandevia, 2001; Laurin et al., 2015; 

Zając et al., 2015). In turn, the decrease in corticospinal impulses has been attributed to 

multiple potential mechanisms. First, it could be explained from a psychological perspective 
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by an unwillingness to exert or maintain high levels of physical effort due to perceived dis-

comfort or other motivational reasons (Davis & Bailey, 1997; Gandevia, 2001; Nybo & 

Secher, 2004; Souron et al., 2020). Second, it may be related to alterations in the interaction 

of cerebral neurotransmitter systems involving serotonin, catecholamines, glutamate, 

gamma-aminobutyric acid, and acetylcholine, some of which could be affected by the cer-

ebral influx of NH3 (Davis & Bailey, 1997; Meeusen et al., 2006; Roelands & Meeusen, 

2010).  

Corticospinal excitability, sometimes also described as corticospinal responsiveness, is typ-

ically assessed using transcranial magnetic stimulation (TMS) to elicit involuntary contrac-

tions. Multiple experimental investigations have demonstrated altered corticospinal excita-

bility as a consequence of fatiguing exercise. Latella et al. (2016) found significant reduc-

tions in the amplitude of motor-evoked potentials (MEP) following five sets of three repeti-

tions at the 3-RM load in the single-arm dumbbell curl. Similarly, Ruotsalainen et al. (2014) 

reported significant decreases in the normalized MEP area over the course of three sets of 

elbow flexions involving eight repetitions performed at an approximate 8-RM load, each set 

being immediately followed by five isokinetic MVCs. The authors also noted a significant 

increase in MEP area after the first set compared to the control condition, which did not 

conform to the observed fatigue-induced reduction in mean isometric MVC force.  

Contrary to the abovementioned studies, some experimental interventions did not identify 

significant changes in corticospinal excitability after fatiguing exercise bouts. For example, 

Prasartwuth et al. (2005) did not find systematic changes in the MEP area following ten sets 

of five repetitions in the eccentric elbow flexion performed at 30% of the predicted maximum 

eccentric force. Thomas et al. (2018) did not find significant changes in the normalized MEP 

amplitude across a broader spectrum of submaximal TMS intensities after ten sets of five 

repetitions on the back squats performed at 80% 1-RM, despite results showing a slight 

(non-significant) trend towards higher values at higher stimulation intensities. These heter-

ogeneous findings reported for corticospinal excitability following fatiguing protocols may 

partially be explained by methodological differences between studies, such as contraction 

mode (i.e., eccentric or concentric fatiguing protocols) and TMS settings, including stimula-

tion frequency. Across the discussed studies, no clear trend could be identified for cortico-

spinal excitability after fatiguing exercise.  

Decreases in voluntary activation, which are most commonly determined by the twitch in-

terpolation technique using either motor nerve stimulation (VAMNS) or transcranial magnetic 

stimulation (VATMS) during MVCs (Shield & Zhou, 2004), have been reported to occur after 

fatiguing exercise on numerous occasions. Goodall et al. (2017) and Prasartwuth et al. 
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(2005) applied a fatiguing protocol involving eccentric elbow flexion for five sets of six rep-

etitions at 30°·s-1 MCV and five sets of ten repetitions at 30% of the predicted maximum 

eccentric force, respectively. Both studies found significant reductions in VAMNS immediately 

after the fatiguing exercise. The studies also showed reductions in VATMS immediately after 

the exercise. However, the effect was only deemed statistically significant in the experiment 

of Goodall et al. (2017), whereas Prasartwuth et al. (2005) reported a non-significant trend 

for reduced VATMS. Prasartwuth et al. (2005) attributed their results to methodological deci-

sions involving the normalization of the superimposed twitch to an estimated resting twitch. 

In addition to eccentric fatiguing protocols, VAMNS was also significantly reduced after 4 min 

of sustained isometric MVCs of the dorsiflexor muscles (Kent-Braun, 1999). Furthermore, 

Thomas et al. (2018) found significant decreases in VAMNS and VATMS immediately after ten 

sets of five repetitions in the back squat executed at 80% 1-RM.  

Overall, it is difficult to conclude to what extent central mechanisms cause intra-set fatigue 

and, consequently, momentary failure, given the lack of research investigating central fa-

tigue after single sets of resisted exercises performed to momentary failure under typical 

loading conditions. However, there is evidence suggesting that psychological mechanisms 

may affect the point of set termination when subjects are instructed to perform a set to 

voluntary (i.e., self-determined) failure, including self-evaluation of performance capacity 

and willingness to produce a maximum effort (Armes et al., 2020; Emanuel et al., 2020; 

Halperin et al., 2021; Souron et al., 2020). These effects may be particularly present in sets 

performed to failure at lighter loads compared to heavier loads (Halperin et al., 2021), which 

have been reported to yield higher levels of perceived discomfort among individuals (Farrow 

et al., 2021; Fisher et al., 2018; Fisher & Steele, 2017; Santos et al., 2021). Therefore, it 

could be hypothesized that the component of intra-set fatigue attributed to central processes 

may be mediated by psychological mechanisms. Further research is required to evaluate 

the contribution of other mechanisms.  

 

Summary 

In conclusion, various biological and psychological mechanisms contribute to exercise-in-

duced fatigue in resistance training and depend on the duration and intensity of muscular 

contractions. However, certain biological mechanisms may specifically affect intra- and in-

ter-set fatigue. For example, while reduced ATP resynthesis and increased serum NH3 may 

predominantly explain inter-set fatigue, increased Pi, H+, and extracellular K+ may provide 

a basis to explain intra-set fatigue during resistance training on a peripheral level. Unfortu-

nately, the exact mechanisms and their respective relevance for the development of intra-
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set fatigue remain unclear in vivo since multiple studies failed to replicate the influence of 

these mechanisms under physiological temperatures. On a central level, research largely 

supports the idea of intra-set fatigue being affected by psychological processes, while the 

contribution of other mechanisms targeting central drive is yet to be determined.  

 

1.1.3.4 Mechanical explanations of fatigue 

While fatigue is most commonly associated with the central and peripheral mechanisms 

discussed in the previous sections, acute changes in mechanical attributes of the muscle-

tendon unit may also contribute to a progressive loss in force production during sustained 

or repetitive contractions. As such, the current section will briefly discuss the acute changes 

in muscle architecture and tendinous tissue compliance that can modulate exercise-induced 

fatigue.  

One major component of muscle architecture that has been shown to experience acute 

changes during exercise is the pennation angle (PA). In particular, a muscle’s PA is asso-

ciated with the force output during contraction, because it determines what proportion of 

muscle cell force (Fmc) can be transmitted to the muscle’s line of action (Roberts et al., 

2019). The force being transmitted to the muscle’s effective direction (Feff) can be estimated 

using trigonometric functions as follows:  

𝐹𝑒𝑓𝑓 [𝑁] = 𝐹𝑚𝑐  cos(𝑃𝐴) (9) 

Therefore, as PA increases to a theoretical limit of 90°, Feff approximates a value of 0 fol-

lowing a curvilinear decay (Figure 3). An acute exercise-induced increase in PA would 

therefore reduce a muscle’s effective force output, even if other central and peripheral fa-

tiguing mechanisms remained unaltered and, thus, contribute to the gradual loss of force 

production associated with muscular fatigue.  

Indeed, numerous studies reported acute systematic changes in muscle architecture fol-

lowing a fatiguing exercise bout. Csapo et al. (2011) identified a 10% increase in PA and a 

2% reduction in fascicle length in the vastus lateralis immediately after a single set of uni-

lateral leg press performed to failure at the individual load that maximizes power output. 

They further observed that these changes slowly returned to baseline levels over the course 

of 30 min. Vieira et al. (2018) also reported significant increases in muscle thickness and 

PA in the vastus lateralis after 50 concentric knee extensions on an isokinetic dynamometer. 

Interestingly, the authors found no equivalent alterations following a work-matched eccen-

tric knee extension protocol, indicating that acute changes in muscle architecture may de-

pend on the contraction mode, the total duration of the exercise, and the exercise intensity.  
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Figure 3. Association between effective muscular force and pennation angle. 

Left panel: effective muscular force (Eeff) expressed as a function of pennation 

angle (PA). Eeff yields the amount of muscle cell force (Fmc) transmitted to the 

muscle’s effective direction. PA is expressed in a theoretical range of 0° to 90° 

to illustrate the geometric relationship. Right panel: example for acute altera-

tions in vastus lateralis PA before (B) and after (A) exhaustive muscular work.  

 

Increases in PA have also been reported after three sets of eight repetitions on the leg 

extension at 85% 1-RM (Martín-Hernández et al., 2013), as well as following an incremental 

ergometer test performed to exhaustion (Brancaccio et al., 2008). Moreover, Maganaris et 

al. (2002), reported that increases in PA and reductions in fascicle length were most pro-

nounced during the first few repetitions of a set of ten short isometric plantarflexions per-

formed at 80% MVC, suggesting that changes in muscle architecture may already occur in 

the early stages of a resistance training set.  

As related to tendinous tissue compliance, Obst et al. (2013) stated, based on a systematic 

review, that the Achilles tendon may experience acute decreases in stiffness (tendon 

creep), hysteresis, and diameter following various loading tasks, including stretching, and 

resisted exercises for the calf muscles. According to these authors, changes were most 

pronounced after prolonged static stretching and isometric MVCs, leading to the conclusion 

that acute changes in tendinous tissue compliance may be mediated by tensile loading in-

tensity and total duration of loading (Tardioli et al., 2012). Acute exercise-induced increases 

in Achilles tendon length and reductions in stiffness have further been reported as more 

pronounced in women than men (Joseph et al., 2014). However, whether decreases in ten-

don stiffness and hysteresis negatively affect force production is still subject to debate. On 
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the one hand, it has been suggested that increased tendinous tissue compliance may ben-

efit performance in certain repetitive movement tasks, such as sprinting, by contributing 

more elastic energy to dynamic contractions (Tardioli et al., 2012). On the other hand, some 

authors suggest that it may reduce peak isometric force and shift the muscle-tendon unit’s 

length-tension relationship towards greater muscle lengths (Lemos et al., 2008; Philippou 

et al., 2009).  

Indeed, tendon mechanics may indirectly affect fatigue-induced force loss, which is medi-

ated by changes in muscle architecture (Csapo et al., 2011). This hypothesis is supported 

by research showing that increases in tendinous tissue compliance and increases in muscle 

PA occur simultaneously to some degree (Kubo et al., 2001; Lemos et al., 2008; Maganaris 

et al., 2002; Pearson & Onambele, 2005). In summary, acute mechanical changes in the 

muscle-tendon unit may contribute to an exercise-induced loss in force production due to 

transient increases in tendon compliance that facilitate an increase in muscle PA. However, 

based on the available evidence, it is impossible to tell to what extent these effects account 

for intra-set fatigue in the presence of other central and peripheral mechanisms.  

 

1.2 Modeling physical performance 

1.2.1 Statistical modeling in exercise science and practice 

Due to the rapid advance in technological resources and the related rise of big data and 

machine learning in sports, statistical modeling of physical performance has recently re-

ceived growing interest. Notably, modeling physical performance is not exclusively limited 

to experimental research settings but has been increasingly applied by practitioners to bet-

ter guide training-related decisions. The implementation of statistical modeling has been 

suggested to focus on three main objectives: description, prediction, and causal inference 

(Hernán et al., 2019; Raita et al., 2021; Sanders, 2019).  

Descriptive statistics are typically applied to summarize data samples, either by quantifying 

univariate features (e.g., measures of frequency, proportion, central tendency, and variabil-

ity) or by quantifying multivariate relationships (e.g., linear regressions) (Hernán et al., 2019; 

Kaur et al., 2018). In training monitoring, descriptive statistics can be used to summarize an 

individual’s internal and external training load over specific time frames (Clarke & Skiba, 

2013; Impellizzeri et al., 2019; B. R. Scott et al., 2016). Diagnostic technology also com-

monly implements descriptive statistics during data processing to facilitate user interpreta-

tion. As an example, systems for monitoring movement velocity or power output in re-

sistance training typically summarize data for each detected concentric repetition by dis-

playing mean or peak values (Mitter, Hölbling, et al., 2021; Weakley et al., 2021).  
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Predictive statistics, in turn, apply derived features of observed data and prior assumptions 

(e.g., assumptions about the underlying model) to unobserved data (Hernán et al., 2019; 

Raita et al., 2021). Typically, this involves estimating the parameters of a statistical model 

from the data we know and using it to calculate the output that maximizes the conditional 

probability for a given input based on interpolation or extrapolation (Rabinowicz & Rosset, 

2020; Sanders, 2019). Notably, predictions may yield varying degrees of accuracy and pre-

cision, depending on numerous factors such as sample size, model validity (i.e., represent-

ativeness of the latent underlying association), the proximity of the predictor to the model 

training data and the variance of model residuals (Figure 4).  

 

 

Figure 4. Different combinations of predictive accuracy and precision (illustration). 

Light grey lines and areas display population trends and their variation. Black dots 

display model training data sampled from the population trend. Dashed lines and 

dark grey areas represent models and 95% confidence intervals, respectively. Col-

ored X’s and colored dashed lines represent an ideal target for prediction at the 

center of the population trend (the point is not part of the training data). A, high 

accuracy and high precision; B, high accuracy and low precision; C, low accuracy 

and high precision; D, low accuracy and low precision.  
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In theory, there is extensive applicability for predictive statistics in sports, including the prog-

nosis of training-induced adaptation based on fitness-fatigue models, and the prediction of 

physical performance given specific exercise conditions (Clarke & Skiba, 2013). For exam-

ple, models of the relationship between load and maximum voluntary movement velocity in 

a given resistance training exercise have been applied to predict one’s 1-RM load from sets 

performed at submaximal loads (Hughes et al., 2019). When estimated for single individu-

als, these so-called load-velocity profiles could also be applied to prescribe intended training 

loads in an autoregulatory fashion based on target movement velocities. This prescriptive 

approach has been suggested to overcome certain limitations of strategies that prescribe 

load as a percentage of a previously tested 1-RM load, by taking into account the athlete’s 

contemporary readiness to perform (Larsen et al., 2021; Weakley et al., 2021).  

The application of performance modeling is not restricted to the field of resistance training. 

In endurance sports, models of the relationship between time-to-exhaustion and running 

velocity (i.e., critical speed models) or power output in cycling (i.e., critical power models) 

have been advocated for the prediction of the best performance time an athlete can achieve 

for a given distance or amount of physical work (Vanhatalo et al., 2011). Estimated param-

eters of these models have also been reported to correlate well with metabolic and func-

tional thresholds, including the maximum lactate steady state (MLSS) and the respiratory 

compensation point (RCP). Therefore, such predictive models may be used to approximate 

respective thresholds without the need for expensive technology to analyze capillary blood 

and respiratory gas (Galán-Rioja et al., 2020).  

Finally, causal inference is typically assessed through counterfactual prediction. It is used 

to deduce causal relationships from statistical models considering the temporality of data 

and expert knowledge about the domain of the investigated causal structure (Hernán et al., 

2019; Raita et al., 2021). It provides information on the hypothetical data-generating pro-

cess and may facilitate or support the prescription of specific actions (Sanders, 2019). In 

the field of physical training, causal inference is an important objective of research in its 

quest to explain certain phenomena and, ultimately, provide practitioners with generalized 

insights to make evidence-based decisions, especially in the absence of more convenient 

indicators (e.g., the individual responsiveness to certain stimuli).  

 

1.2.2 Modeling strength endurance 

As described in chapter 1.1.2, strength endurance in dynamic isoinertial exercises is typi-

cally characterized by the magnitude of the applied load and the number of repetitions that 



 

25 

can be achieved before reaching momentary failure. Studying the bivariate relationship be-

tween load and RTF in dynamic resistance training exercises has a long history in sport 

science, with early work dating back to the 1960s. One of these early investigations was 

conducted by Martens (1965), who explored the relationships between maximum isometric 

strength and isometric muscular endurance, as well as maximum dynamic strength (i.e., 1-

RM) and dynamic muscular endurance (i.e., repetitions with a standardized movement ca-

dence) in the elbow flexion exercise at 37.5% of the individual maximum strength load. He 

did not identify any significant association between maximum strength and muscular endur-

ance, irrespective of the type of muscle action performed. However, he reported consider-

able between-subject variance in the number of repetitions performed during the first ex-

perimental period (Trial No. 1; mean ± SD [min-max]: 41.2 ± 6.5 [28-52] repetitions). Fur-

thermore, the within-subject variability across test-retest trials reported by the author corre-

sponds to a standard error of measurement (SEM) of 3.5 repetitions (90% Highest Density 

Interval: [2.8, 4.8])1. Even though Martens (1965) did not acknowledge this information, the 

previously presented data yields evidence that relative strength endurance is characterized 

by larger between-subject variability than within-subject variability.  

Over the past decades, the primary motivation behind strength-endurance models has been 

the formulation of equations to predict the 1-RM load from a set performed to momentary 

failure at a submaximal load. Some published predictive equations feature multiple linear 

regression models and, therefore, apply the 1-RM directly as a dependent variable (Cum-

mings & Finn, 1998; Dohoney et al., 2002; Horvat et al., 2003; Julio et al., 2012; Kravitz et 

al., 2003; Kuramoto & Payne, 1995; Macht et al., 2016; Materko & Santos, 2009; Mayhew 

et al., 2002; Tan et al., 2015; Tucker et al., 2006; Whisenant et al., 2003). Other equations 

aimed to model the bivariate relationship between relative load and RTF to calculate the 1-

RM from a predicted relative load (loadrel, expressed as % 1-RM) by factoring in the applied 

absolute load (loadabs, expressed in kg).  

1 − 𝑅𝑀 [𝑘𝑔] =
100

𝑙𝑜𝑎𝑑𝑟𝑒𝑙
 𝑙𝑜𝑎𝑑𝑎𝑏𝑠 (10) 

Table 2 provides an overview of bivariate strength-endurance models available in the liter-

ature.  

 

 

 

1 The SEM and HDI were calculated independently by the author of the present thesis, using the raw 
data provided by Martens (1965) and the statistical approach described in publication 2.  
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Importantly, not all model equations originate from empirical research. As outlined by Rich-

ens and Cleather (2014) and Wood et al. (2002), numerous predictive equations stem from 

loading charts or were published in textbooks on resistance training without ever providing 

explicit details on their computation (Adams & Beam, 2014; Brown, 1992; Epley, 1985; 

Lander, 1985; O'Connor et al., 1989; Wathen, 1994). Other equations reportedly resulted 

from intuitive curve fitting on unpublished data (Brzycki, 1993; Lombardi, 1989).  

 

1.2.2.1 Proposed model functions 

Thus far, six different model functions (i.e., model types) have been proposed in the litera-

ture to quantify the strength-endurance relationship. First, a linear regression model has 

been applied by several authors (Adams & Beam, 2014; Berger, 1970; Brzycki, 1993; 

Lander, 1985):  

𝑙𝑜𝑎𝑑 = 𝑎 + 𝑏 𝑅𝑇𝐹 (11) 

Brzycki (1993), while acknowledging that the strength-endurance relationship may, in fact, 

not be linear across its entire spectrum, suggested that a simple linear model may be a 

close enough approximation at loads allowing for ten repetitions or less. However, many 

authors proposed that the relationship between relative load and RTF follows a curvilinear 

trend (e.g., Brechue & Mayhew, 2009; Desgorces et al., 2010; Mayhew et al., 2008; Reyn-

olds et al., 2006). To account for a curvilinear pattern in the strength-endurance relationship, 

some authors seemingly adapted the linear model by applying a reciprocal transformation 

to load as dependent variable, yielding 1/load (Brown, 1992; O'Connor et al., 1989; Welday, 

1988) 2. Thus, rearranging the previous model equation, the curvilinear trend could be ex-

pressed as follows:  

𝑙𝑜𝑎𝑑 =
1

𝑎 + 𝑏 𝑅𝑇𝐹
 (12) 

 

2 Equations provided by these authors were originally arranged to predict the 1-RM load from a sub-
maximal load and the RTF achieved at it, the load being expressed in a unit of mass (loadabs):  
1-RM = (a + b RTF) loadabs. It is important to note that, due to the absence of a rationale behind the 
models, the intended model function can only be assumed. For example, the addressed equations 
could theoretically be interpreted as multiple linear regressions featuring the 1-RM load as a depend-
ent variable, a coefficient for loadabs (a) and a coefficient for the product term RTF x loadabs (b). 
However, it is highly uncommon to express multiple linear regression models without a constant 
additive term (intercept), making it an unlikely candidate as originally intended model function. When 
dividing both sides of the original equation by loadabs, the resulting equation would yield a simple 
linear regression, with the dependent variable being the inverse of relative load, and expressed as a 
factor. Therefore, the inverse transformation of the dependent variable is assumed as the intended 
modeling approach by the addressed authors.  
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Due to the characteristic transformation, eq. 12 will be referred to as the reciprocal regres-

sion model throughout this manuscript. Interestingly, two of the three sources mentioned 

above applied an “a” parameter of 1 (O'Connor et al., 1989; Welday, 1988). However, this 

represents a questionable simplification or rounding of the parameter, as an intercept of 1 

suggests the 1-RM to occur at 0 repetitions, making model equations proposed by O'Connor 

et al. (1989) and Welday (1988) logically conflicting. Assuming that the parameter “b” is a 

positive number, “a” would rather be expected to be smaller than 1, as shown in the equa-

tion proposed by Brown (1992).  

Lombardi (1989), in turn, proposed a predictive equation for the 1-RM load based on a 

power function featuring a single exponential parameter. This model was also adopted by 

Mayhew et al. (2004), who further introduced a multiplicative parameter. Accordingly, the 

equation originally presented by Mayhew et al. (2004) can be rearranged to represent the 

strength-endurance relationship as follows:  

𝑙𝑜𝑎𝑑 = 𝑎 𝑅𝑇𝐹𝑏 (13) 

Importantly, outcomes predicted from power models are typically susceptible to predictor 

input, especially if the effect of the exponential parameter is not mitigated by other model 

terms (e.g., multiplicative or additive terms). This was also confirmed by Mayhew et al. 

(2004), who reported worse cross-validation performance of the power function compared 

to the linear and exponential functions. Therefore, the power function is only mentioned for 

historical reasons and will not be discussed further in the present thesis.  

Another approach to account for a curvilinear relationship has been suggested in the form 

of a 3-parameters exponential regression model (Desgorces et al., 2010; Mayhew et al., 

1992; Reynolds et al., 2006; Sakamoto & Sinclair, 2006; Wathen, 1994). The model features 

a multiplicative (“a”), an exponential (“b”), and an additive parameter (“c”), with an asymp-

tote of 𝑓(𝑥) = 𝑐 :  

𝑙𝑜𝑎𝑑 = 𝑐 + 𝑎 𝑒𝑏 𝑅𝑇𝐹 (14) 

Berger (1961, as cited in Mayhew et al., 2004) and Mayhew et al. (2008) further proposed 

a simplified version of the exponential regression by omitting the additive parameter “c”, 

yielding a 2-parameters exponential regression model:  

𝑙𝑜𝑎𝑑 = 𝑎 𝑒𝑏 𝑅𝑇𝐹 (15) 

Eq. 15 could also be derived from a linear regression model (eq. 11) after applying a natural 

log transformation to load as dependent variable. For details, see section 8.1 (Appendix A).  

Finally, the most recent addition to strength-endurance models has been proposed by R. 

H. Morton et al. (2014), who investigated the transferability of the critical power model to 
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resistance training. Monod and Scherrer (1965) originally introduced the critical power 

model to quantify the maximum physical work produced during local muscular action as a 

function of a given time limit. In their article, Monod and Scherrer (1965) ascribed biological 

meaning to the parameters of their proposed model, stating that they reflect circulatory con-

ditions within the muscle and the muscle’s energy reserve. Since their pioneering work, the 

critical power model has drawn much attention in endurance sports and has been refined 

multiple times, for example, to yield physical power (P) as a dependent variable rather than 

work (Clarke & Skiba, 2013). One of the alterations of the early critical power model was 

proposed by Moritani et al. (1981), who suggested a linear regression model that accounted 

for the curvilinear relationship between P and tlim by introducing a reciprocal transformation 

on tlim as the independent variable:  

𝑃 = 𝐶𝑃 +𝑊′
1

𝑡𝑙𝑖𝑚
 (16) 

In eq. 16, CP (critical power) represents the power-asymptote, and W’ (occasionally labeled 

anaerobic work capacity, AWC) represents the model curvature. This model was later com-

plemented by a third parameter to introduce a variable time-asymptote (k) and, therefore, 

allow for an axis-intercept (Pmax) at tlim = 0 (R. H. Morton, 1996):  

𝑃 =
𝑊′

𝑡𝑙𝑖𝑚 − 𝑘
+ 𝐶𝑃 

𝑘 =
𝑊′

𝐶𝑃 − 𝑃𝑚𝑎𝑥
 

(17) 

While the critical power model originally found application in various endurance-oriented 

physical activities such as cycling, running, swimming, and rowing (Clarke & Skiba, 2013), 

R. H. Morton et al. (2014) hypothesized that the model could eventually be applied to dy-

namic resistance training exercises, which display a similarly repetitive or cyclic movement 

pattern. The authors proposed that in resistance exercises, power output could be ex-

pressed as the product of mass (i.e., load), acceleration due to gravity (g), distance (i.e., 

range of motion, d), and movement cadence (i.e., repetitions per minute, c), using the fol-

lowing equation:  

𝑃 =
𝑙𝑜𝑎𝑑 𝑔 𝑑 𝑐

60
 (18) 

Assuming that the range of motion and movement cadence are held constant, power output 

is directly proportional to the applied load. Furthermore, since the time to exhaustion is 

defined by RTF at a constant movement cadence, tlim could be expressed as follows:  
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𝑡𝑙𝑖𝑚 = 𝑅𝑇𝐹
60

𝑐
 (19) 

By maintaining the abovementioned assumptions, tlim would be directly proportional to  

RTF 3. Consequently, R. H. Morton et al. (2014) suggested that the variables P and tlim 

outlined in the critical power model (eq. 17) could be replaced by load and RTF when ap-

plying the model for resistance exercises. The authors proposed alternative labels for the 

model parameters to account for these changes in model variables. Specifically, W’ became 

anaerobic lift capacity (ALC), CP became critical lift (CL), and Pmax became Lmax:  

𝑙𝑜𝑎𝑑 =
𝐴𝐿𝐶

𝑅𝑇𝐹 − 𝑘
+ 𝐶𝐿 

𝑘 =
𝐴𝐿𝐶

𝐶𝐿 − 𝐿𝑚𝑎𝑥
 

(20) 

Over the past years, the model has been given different names based on the parameter 

labels chosen, such as the critical resistance model (Dinyer, Byrd, Succi, & Bergstrom, 

2020; Dinyer, Byrd, Vesotsky, Succi, & Bergstrom, 2019; Dinyer, Byrd, Vesotsky, Succi, 

Clasey, & Bergstrom, 2019) or the critical load model (Arakelian et al., 2017; Arakelian et 

al., 2018; Arakelian et al., 2019; Dinyer, Byrd, Succi, Clasey, & Bergstrom, 2020; Dinyer, 

Byrd, Vesotsky, et al., 2020; Moss et al., 2021). A recent review by Bergstrom et al. (2021) 

proposed the unification of terminology, officially calling it the critical load model and pro-

posing the following parameter labels: L’ instead of ALC as the curvature constant, and CL 

as critical load, yielding the following final equation:  

𝑙𝑜𝑎𝑑 =
𝐿′

𝑅𝑇𝐹 − 𝑘
+ 𝐶𝐿 

𝑘 =
𝐿′

𝐶𝐿 − 𝐿𝑚𝑎𝑥
 

(21) 

 

1.2.2.2 Potential applications of strength-endurance models 

Thus far, the application of strength-endurance models in research and practice has typi-

cally been focused on predicting the 1-RM load based on a set performed to failure at sub-

maximal loads. However, strength-endurance models can also predict the load associated 

with any given repetition maximum (n-RM). When interpolating and extrapolating loads 

 

3 As a side note, it should be mentioned that while these explanations follow logical reasoning, they 
display an oversimplification of mechanic processes and lack ecological validity. First, the force ap-
plied in resistance training is not solely determined by the exercise load and acceleration due to 
gravity, but also a dynamic acceleration component that is required to overcome inertia. Second, 
standardizing the tempo or cadence of a movement may not be reasonable under all circumstances.  



 

31 

across a broader range of n-RM, these predictions can also be summarized in the form of 

repetition maximum tables or loading charts, providing practitioners the means for quick 

orientation across the strength-endurance spectrum when designing resistance training 

programs (Chapman et al., 1998; Epley, 1985; Haff & Triplett, 2016; Lander, 1985; Lorenz 

et al., 2010; Mayhew et al., 1993; Morales & Sobonya, 1996). Table 3 summarizes predicted 

relative loads for repetition maxima in the 1-RM to 20-RM range using the model equations 

shown in Table 2.  

Assuming that a specific strength-endurance model yields a valid representation of some-

one’s capabilities, predictions could further be used to prescribe submaximal levels of effort 

in a continuous normalized fashion. This may be of substantial interest to researchers in-

vestigating the role of effort in training-induced adaptations. So far, research has predomi-

nantly dichotomized the intensity of effort into either training to failure (i.e., applying maximal 

effort) or not to failure (i.e., applying submaximal effort), without any further consideration 

to how close to failure the submaximal effort was. This dichotomization of effort, unfortu-

nately, rules out the possibility of drawing inferences on a dose-response relationship and 

leaves training to failure as the only objective approach to standardizing effort between and 

within individuals (Fisher et al., 2022; Steele, Fisher, et al., 2017). Therefore, identifying a 

reliable method of quantifying the intensity of effort as a continuous variable may offer novel 

opportunities to understand effort as a potential mediator of adaptation processes.  

Apart from its considerable value for research, the quantification of effort may also interest 

practitioners. It has commonly been proposed that resistance exercise should be performed 

to failure, or close to it, to maximize muscle fiber recruitment and stimulate muscle hyper-

trophy and strength gains (Fisher et al., 2022; Iversen et al., 2021). This approach, however, 

may not be ideal under certain circumstances. For example, adaptations in explosive per-

formance have been shown to benefit from a lower intensity of effort during a training regi-

men in resistance-trained individuals (Alcazar et al., 2021; Izquierdo-Gabarren et al., 2010; 

Pareja-Blanco et al., 2017; Pareja-Blanco, Alcazar, et al., 2020). These findings may, to 

some extent, be explained by the fact that lower levels of intra-set fatigue allow for better 

maintenance of explosive performance throughout the training session (Fonseca et al., 

2020; Morán-Navarro et al., 2017; Pareja-Blanco et al., 2019; Pareja-Blanco, Rodríguez-

Rosell, et al., 2020; Piqueras-Sanchiz et al., 2021; Sánchez-Medina & González-Badillo, 

2011). 
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Furthermore, the accumulation of exercise-induced fatigue has also been associated with 

negative changes in affective valence and greater feelings of discomfort, especially when 

sets to failure are performed at lighter loads (Cavarretta et al., 2022; Kaus, 2014; Orssatto 

et al., 2020; Ribeiro et al., 2019). Indeed, experiencing high levels of effort too frequently 

may result in a negative affective valuation of training, providing a reason for practitioners 

to regulate and vary the intensity of effort in a controlled fashion, which may help maintain-

ing trainees’ adherence to the training program (Cavarretta et al., 2019b, 2019a).  

Thus far, research has suggested two approaches to normalize intensity of effort on a con-

tinuous scale, which will be covered in detail in the following sections.  

 

Relative intensity of set-repetition best 

 

 

Figure 5. Relative intensity of set-repetition best (illustration). 

The solid black line displays the assumed strength-endurance 

model (Adams and Beam, 2014). The black circle portrays an 

exemplary set at submaximal effort (5 x 70% 1-RM). The red 

X displays the extrapolated maximum load that could theoret-

ically be applied for a given volume of 5 repetitions, according 

to the strength-endurance model. 1-RM, one-repetition maxi-

mum; loada, applied load; loadmax, extrapolated maximum load.  

 

  

loadmax 

loada 
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Submaximal levels of effort can be quantified by expressing the applied load (loada) as a 

proportion of the predicted maximum load (loadmax) that could have been used for the same 

number of completed repetitions na (B. R. Scott et al., 2016). This concept is illustrated in 

Figure 5 and can be expressed mathematically as follows:  

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑠𝑒𝑡 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒:     𝑛𝑎 × 𝑙𝑜𝑎𝑑𝑎 

𝑅𝐼𝑆𝑅 =
𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑚𝑎𝑥

 

𝑙𝑜𝑎𝑑𝑚𝑎𝑥 = 𝑓(𝑛𝑎) 

(22) 

Under the assumption that a person’s strength-endurance relationship follows the model 

described by Adams and Beam (2014), an exercise set performed with five repetitions at 

70% 1-RM would correspond to an effort of about 80% 5-RM (i.e., 70/88; 70%-1RM being 

the applied load and 88% 1-RM being the predicted maximum load that could be chosen 

for a target of 5 repetitions, as shown in Table 3).  

To the author’s knowledge, this concept was originally introduced by M. H. Stone and O'Bry-

ant (1987). Since then, it has been communicated under names such as the relative inten-

sity using specific set and repetition configurations (Carroll, Bazyler, et al., 2019; Carroll, 

Bernards, et al., 2019; DeWeese et al., 2015) or as the relative intensity of set-repetition 

best (Suchomel et al., 2021). Throughout this thesis, the concept will be addressed using 

the acronym RISR.  

 

Relative effort 

The intensity of effort can also be quantified as the proximity to momentary failure at the set 

endpoint based on the number of actually performed repetitions and the maximum achiev-

able number of repetitions (nmax or RTF) for a given load (Figure 6). Research has recently 

proposed the term relative effort (RE) for this kind of normalization (Steele, Endres, et al., 

2017; Steele, Fisher, et al., 2017):  

𝐴𝑝𝑝𝑙𝑖𝑒𝑑 𝑠𝑒𝑡 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒:     𝑛𝑎 × 𝑙𝑜𝑎𝑑𝑎 

𝑅𝐸 =
 𝑛𝑎
𝑛𝑚𝑎𝑥

 

𝑛𝑚𝑎𝑥 = 𝑓(𝑙𝑜𝑎𝑑𝑎) 

(23) 
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Figure 6. Relative effort (illustration). 

The solid black line displays the assumed strength-endur-

ance model (Adams and Beam, 2014). The black circle por-

trays an exemplary set at submaximal effort (5 x 70% 1-

RM). The red X displays the extrapolated maximum number 

of repetitions that could theoretically be performed at a 

given load of 70% 1-RM, according to the strength-endur-

ance model. 1-RM, one-repetition maximum; na, applied 

repetitions; nmax, extrapolated maximum number of repeti-

tions.  

 

Applying the model proposed by Adam and Beam (2014) and the same set structure as in 

the previous example (5 x 70% 1-RM), a relative effort of about 42% nmax can be calculated 

(i.e., 5/12; 5 being the number of repetitions performed and 12 being the maximum number 

of repetitions that could have been performed at 70% 1-RM before reaching momentary 

failure according to Table 3).  

RE can also be estimated retrospectively without using strength-endurance models, but by 

predicting nmax in an alternative way after the end of each exercise set. For this purpose, 

athletes can, for example, resort to subjectively estimating the repetitions in reserve (RIR) 

based on the self-evaluation of their performance or the perceived proximity to failure at the 

set endpoint. This estimate could then be added to the number of repetitions that were 

performed, as follows:  

 𝑛𝑚𝑎𝑥 = 𝑛𝑎 + 𝑅𝐼𝑅 (24) 

nmax na 
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However, this approach assumes a high agreement between perceived proximity to failure 

and actual proximity to failure, which is conceptually questionable (Steele, 2021). Indeed, 

this may not always been the case, especially when a set endpoint occurs far from failure 

and at lighter loads (Halperin et al., 2021).  

Practitioners can also utilize the velocity of the fastest repetition in a set as a predictor of 

nmax (Miras-Moreno et al., 2022) or predict RE from the reduction in maximum voluntary 

movement velocity between the first (or fastest) and last repetition of a specific exercise set 

(Hernández-Belmonte et al., 2021; Rodríguez-Rosell et al., 2020). However, these velocity-

based approaches typically require reliable technology to assess movement velocity and 

assume that athletes perform each repetition with maximum intent (i.e., maximum voluntary 

velocity). Individuals who are not familiar with the execution of a given exercise at maximum 

intent may therefore experience higher variability of recorded performance (Grgic, Scapec, 

et al., 2020), especially when the equipment or technology used is subject to a more pro-

nounced random measurement error (Courel-Ibáñez et al., 2019; Martínez-Cava et al., 

2020). Naturally, this may affect predictions from statistical models using velocity as a pre-

dictor.  

 

Proposing a new paradigm: vectorized relative effort 

Even though RISR and RE represent different perspectives of a set’s structure (load and 

volume, respectively), they both provide a reasonable approach to quantifying the intensity 

of effort for a given set. However, when applied to the same set structure, these two ap-

proaches usually lead to different relative magnitudes. As shown in the examples presented 

in the two previous sections, a set of five repetitions at 70% 1-RM yielded a RISR of ~80% 

and a RE of ~42%. Therefore, the two concepts cannot be used interchangeably, which 

challenges practitioners’ ability to decide between them if they intend to normalize the in-

tensity of effort. One possibility to eliminate the need to decide between the two approaches 

is developing a new concept that unifies both perspectives. This goal can be achieved by 

applying a geometric perspective (Figure 7) and expressing the load and number of repeti-

tions applied as a position vector (𝑂𝐴⃗⃗⃗⃗  ⃗):  

𝑂𝐴⃗⃗⃗⃗  ⃗ = (
𝑙𝑜𝑎𝑑𝑎
 𝑛𝑎

) (25) 

The length of this vector can then be quantified as:  

|𝑂𝐴⃗⃗ ⃗⃗  ⃗| = √𝑙𝑜𝑎𝑑𝑎
2 + 𝑛𝑎

2 (26) 
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Figure 7. Vectorized relative effort (illustration). 

The solid black line displays the assumed strength-endurance model 

(Adams and Beam, 2014). The black circle portrays an exemplary 

set at submaximal effort (5 x 70% 1-RM). The red X displays the 

extrapolated strength-endurance maximum that could theoretically 

be performed, according to the strength-endurance model, if the 

load-to-repetitions ratio is maintained. 1-RM, one-repetition maxi-

mum; A, applied set (na x loada) expressed as geometric coordi-

nates; Smax, extrapolated strength-endurance maximum with the 

same load-to-repetitions ratio.  

 

When expressing 𝑂𝐴⃗⃗⃗⃗  ⃗ as a linear function, it yields:  

𝑙𝑜𝑎𝑑 =
𝑙𝑜𝑎𝑑𝑎
𝑛𝑎

 𝑛 (27) 

The intersection between 𝑂𝐴⃗⃗⃗⃗  ⃗ and the assumed strength-endurance model can now be cal-

culated, which yields a point on the strength-endurance function with the same position 

vector orientation as the applied set (𝑆𝑚𝑎𝑥). Thus, the coordinates of both position vectors 

are proportional by a factor 𝜑:  

𝑂𝐴⃗⃗⃗⃗  ⃗ = 𝜑 𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥 (28) 

A 

Smax 
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Assuming once again that the model proposed by Adams and Beam (2014) provides a good 

representation of the individual strength-endurance relationship (i.e., 𝑙𝑜𝑎𝑑 = 1 − 0.025 𝑛), 

the intersection can be expressed as follows:  

 

𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥 = (
𝑙𝑜𝑎𝑑𝑙𝑖𝑚
𝑛𝑙𝑖𝑚

) =

(

 

𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎

𝑛𝑎
𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎)

   (29) 

A full derivation of eq. 29 is available in section 8.2 (Appendix B). As for eq. 26, the length 

of 𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥 can then be quantified as:  

|𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥| = √𝑙𝑜𝑎𝑑𝑙𝑖𝑚
2 + 𝑛𝑙𝑖𝑚

2 = √
𝑙𝑜𝑎𝑑𝑎

2 + 𝑛𝑎²

(𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎)²
 (30) 

Relative effort can then be expressed as the proportion between 𝑂𝐴⃗⃗⃗⃗  ⃗ (eq. 26) and 𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥 

(eq. 30) vector lengths, which, once resolved, would yield the following:  

𝑅𝐸𝑣 = 𝜑 =
|𝑂𝐴⃗⃗⃗⃗  ⃗|

|𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥|
=
𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑙𝑖𝑚

=
𝑛𝑎
𝑛𝑙𝑖𝑚

= 𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎   (31) 

For consistency, this novel concept will be addressed in the present thesis as the vectorized 

relative effort (REv). To provide an example, the previously mentioned set structure of  

5 x 70% 1-RM would yield a REv of 82.5%. This value could be interpreted as an index of 

proximity to momentary failure from the perspective of a geometric origin rather than a given 

load (i.e., as in RE) or a given number of repetitions (i.e., as in RISR). Therefore, REv quan-

tifies the proximity to failure based on a predicted performance limit that shares the same 

load-to-repetitions ratio as the set performed (loadlim / nlim = loada / na). However, it should 

be noted that, like the other approaches discussed before, the computation of REv for a set 

performed at submaximal effort requires users to assume a specific strength-endurance 

relationship.  
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1.2.2.3 Flaws in published strength-endurance models 

While empirical research and textbooks have proposed many equations of fitted strength-

endurance models over the past decades, different model functions have rarely been com-

pared to provide a rigorous conclusion on which one yields the better approximation to the 

strength-endurance relationship. Both Reynolds et al. (2006) and Desgorces et al. (2010) 

fitted linear (eq. 11), and exponential models (eq. 14) to strength-endurance data and com-

pared the variance explained (R²) and standard error of estimate (SEE) between the two 

functions. Based on this comparison, both authors concluded that the exponential model 

was the better choice. Still, it is questionable whether R² and SEE alone constitute a rea-

sonable basis for this conclusion since the two statistics only provide information about the 

model fit and, thus, only quantify the descriptive properties of a model.  

As outlined in chapter 1.2.2.2, the main application of strength-endurance models revolves 

not around description but prediction. In contrast to the descriptive validity of a model, pre-

dictive accuracy is not necessarily represented by measures of in-sample model fit such as 

R² and SEE (Poldrack et al., 2020). The dichotomy of in-sample model fit and out-of-sample 

predictive accuracy is ultimately related to the issue of overfitting statistical models. While 

the model fit systematically increases with model complexity (e.g., by adding new parame-

ters), the predictive accuracy of a model is determined by the magnitude of the total model 

error (i.e., the sum of error due to bias, variance and noise) (Gigerenzer & Brighton, 2009). 

However, total model error shares a different relationship with model complexity, which is 

well documented as the bias/variance tradeoff (Briscoe & Feldman, 2011; Poldrack et al., 

2020; Waldmann, 2019). In principle, it states that the error due to inappropriate model 

assumptions (i.e., bias) and error due to sample-specific parameter estimates (i.e., vari-

ance) coexist and are to some degree inversely related. Therefore, bad predictive perfor-

mance can result from too simplistic (i.e., underfitting) and too complex (i.e., overfitting) 

models, yielding the optimal level of model complexity somewhere in-between. Figure 8 

illustrates the dichotomy of model fit and predictive accuracy with simulated data.  
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Figure 8. The dichotomy of model fit and predictive accuracy (illustration). 

Panels A to C portray three model functions (dashed lines) at different levels of 

model complexity, as defined by the degree of polynomial fit: A, linear fit (1st-

degree polynomial); B, 6th-degree polynomial fit; C, 11th-degree polynomial fit. 

Panel D portrays the dichotomy of model fit and predictive accuracy: model fit 

(R², solid grey line) increases continuously as model complexity increases. Pre-

dictive accuracy is expressed as root mean squared error calculated from leave-

one-out cross-validation (RMSE [LOOCV], dotted black line), which drastically 

increases from a certain level of complexity. The dashed red line marks the level 

of complexity with the highest predictive accuracy (i.e., lowest RMSE).  
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While predictive accuracy should be typically evaluated across the full spectrum of data 

using cross-validation, the best indicators to evaluate the predictive accuracy of published 

strength-endurance models are studies validating 1-RM predictive equations against a di-

rect 1-RM assessment. Surprisingly, these studies reported heterogeneous findings be-

tween and within the investigated predictive equations. Welday‘s equation (1988, as cited 

by Mayhew et al., 2008), occasionally named after one of its most popular proponents, Boyd 

Epley, was found to either underpredict (LeSuer et al., 1997; Schwingel et al., 2009; Wood 

et al., 2002) or overpredict the 1-RM load (DiStasio, 2014; Mayhew et al., 2004; Nickerson 

et al., 2020; Ware et al., 1995). Similarly, Brzycki’s equation (1993) was also found to un-

derpredict (DiStasio, 2014; LeSuer et al., 1997; Mayhew et al., 2008; McNair et al., 2011; 

Schwingel et al., 2009; Wood et al., 2002) and overpredict the 1-RM load (Mayhew et al., 

2008; Ware et al., 1995). Moreover, numerous studies reported considerably large be-

tween-subject variance in predictive accuracy for all the equations investigated (Costa & 

Ribeiro Neto, 2018; Hetzler et al., 2010; Mayhew et al., 2008; McNair et al., 2011; Nickerson 

et al., 2020; Ribeiro Neto et al., 2017; Ware et al., 1995; Wood et al., 2002), despite some 

authors misinterpreting a non-significant difference between predicted and actual 1-RM as 

evidence for high accuracy (Ribeiro Neto et al., 2017; Schwingel et al., 2009). Researchers 

have also reported a trend towards higher predictive accuracy when the RTF test used as 

predictor was performed at a load allowing only for a small number of repetitions to be 

completed (Desgorces et al., 2010; Mayhew et al., 2008; Reynolds et al., 2006; Wood et 

al., 2002).  

The most obvious explanation for the heterogeneous findings described above would be 

that the sample characteristics and experimental methodology varied substantially across 

the validation studies and, thus, may not have been representative of the original investiga-

tions that proposed the analyzed equations. In turn, the high between-subject variance in 

predictive accuracy could be explained by confounders that were not accounted for in the 

bivariate strength-endurance models. One such confounder that is commonly disregarded 

in validation studies is the type of exercise applied. Several studies reported significant dif-

ferences between exercises in RTF performed at the same standardized relative load, the 

effect being most pronounced at lower relative loads (Arazi & Asadi, 2011; Hoeger et al., 

1990; Shimano et al., 2006). Shimano et al. (2006) suggested that the number of RTF may 

depend on the muscle mass involved in a given exercise after reporting significantly higher 

RTF in the back squat than in the arm curl and, in certain conditions, the bench press. 

Comparable results were also reported by Arazi and Asadi (2011). Furthermore, Reynolds 

et al. (2006) found that the relationship between relative load and RTF differed between the 
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chest press and leg press exercise, and trends continuously diverged as relative load de-

creased.  

Another exercise-related confounder that has been reported to affect the number of repeti-

tions attained at standardized relative loads is movement cadence (i.e., tempo). In particu-

lar, the use of a higher movement tempo has repeatedly been shown to allow for a greater 

number of repetitions to be performed before reaching momentary failure (Buitrago et al., 

2012; LaChance & Hortobagyi, 1994; R. W. Morton et al., 2019; Sakamoto & Sinclair, 2006). 

However, this phenomenon cannot be entirely explained by the total time under tension: 

Buitrago et al. (2012) found significant differences in total exercise duration when comparing 

different movement cadences to a condition where subjects performed the concentric phase 

at maximum voluntary velocity. Similar differences in time under tension were also reported 

by R. W. Morton et al. (2019).  

Aside from exercise-related confounders, there is also evidence of biological factors influ-

encing the strength-endurance relationship. It has been suggested that, on average, women 

may be less fatigable than men, although this effect has been considered task-specific 

(Hunter, 2009). Hoeger et al. (1990) reported descriptive statistics on the number of RTF 

that indicate significant differences between men and women for certain exercises, at a .05 

alpha level 4. These differences were most prominent in untrained individuals and at lighter 

loads. However, in certain conditions, men performed significantly more repetitions than 

women at standardized relative loads (e.g., in the knee extension at 40% 1-RM in trained 

individuals or the arm curl at 80% 1-RM in untrained individuals). Dinyer, Byrd, Vesotsky, 

Succi, Clasey, and Bergstrom (2019) assessed men and women for their individual critical 

load in the deadlift. While they reported the critical load to be at a significantly higher per-

centage of the 1-RM in women compared to men (mean ± SD: 41 ± 2 % 1-RM and 37 ± 6 

% 1-RM, respectively), women also achieved significantly more RTF at the critical load as 

compared to men (58 ± 12 vs. 45 ± 14 repetitions, respectively).  

The difference in relative strength endurance between men and women appears to be task-

specific rather than a uniform effect across different exercises and loads. As such, it could 

be reasoned that there might be a different causal factor influencing the number of RTF 

completed at a given load, which is merely mediated by biological sex. It seems reasonable 

to assume that intra-set fatiguability and, thus, strength endurance are determined by the 

capacity of psycho-physiological systems to counteract fatigue-related processes. Douris 

et al. (2006) investigated the relationship between the distribution of muscle fiber types and 

 

4 Independent t-tests were completed by the author of the present thesis based on descriptive sta-
tistics presented by Hoeger et al., (1990). 
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the number of RTF performed at 70% 1-RM in the leg extension exercise. The authors 

reported a significant negative effect of the proportion of type II muscle fibers on the number 

of RTF completed (r = -0.48). Since type II muscle fibers have been reported as more sus-

ceptible to fatigue than type I fibers, their findings support the conclusion that a greater 

proportion of easily fatigable muscle fibers in the working muscle would predispose to a 

lower number of repetitions to be performed at moderate relative loads. Notably, the authors 

did not acquire information on the fiber type distribution based on muscle biopsies but pre-

dicted the proportion of type II fibers based on an isokinetic assessment protocol. In con-

trast, Terzis et al. (2008) determined fiber type distribution through actual muscle biopsies 

of the vastus lateralis and observed only minor non-significant associations between the 

proportion of type I fibers and the number of RTF at 85% and 70% 1-RM in the leg press. 

However, they reported a significant interaction between capillary density and RTF 

achieved at 70% 1-RM (r = 0.7). Similar to other factors influencing fatigue resistance, there 

is evidence that certain exercise modes may promote an increase in capillary density, while 

others have been considered to reduce or maintain it along with hypertrophic adaptations 

of the skeletal muscle (MacInnis & Gibala, 2017; Tesch, 1988). Therefore, it could be ar-

gued that the strength-endurance relationship may be affected by an individual’s quantita-

tive and qualitative training history (i.e., the type and extent of past exercise experience). 

This hypothesis is supported by multiple investigations comparing the number of RTF at 

standardized relative loads between participants with strength- and endurance-dominant 

backgrounds (Desgorces et al., 2010; Panissa et al., 2013; Richens & Cleather, 2014).  

In summary, there is evidence suggesting that the strength-endurance relationship may 

vary considerably among different exercise conditions and due to individual characteristics. 

However, since published models do not typically account for the contribution of these con-

founders, their practical applicability to make valid load predictions is still limited.  

 

1.2.2.4 Proposing a solution to the problem 

To improve the predictive accuracy of strength-endurance models, it seems crucial to ac-

count for the variance introduced by exercise- and subject-related confounders. This could 

be accomplished in two different ways. First, strength-endurance models could be comple-

mented by adding essential confounders as covariates or moderator variables to the model, 

hence increasing the number of parameters and, thus, the complexity of the model. This 

strategy has been applied numerous times to improve strength-endurance-based 1-RM pre-

dictions, either: (i) by adding anthropometric variables and individual characteristics as pre-

dictors (Cummings & Finn, 1998; Kuramoto & Payne, 1995; Materko & Santos, 2009; 
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Whisenant et al., 2003), (ii) by combining load and RTF to an interaction term (Kravitz et 

al., 2003; Whisenant et al., 2003) or (iii) by using higher-order polynomials (Kemmler et al., 

2006). However, each new predictor variable added to the model would require practitioners 

to record additional information before being able to make predictions. While some potential 

predictors could be easily determined (e.g., the type of exercise or biological sex), others 

would require a detailed assessment (e.g., anthropometric measures). In order to qualify 

for application in resistance training practice, such assessments would have to be time-

efficient, easily quantifiable, and valid without requiring the acquisition of expensive tech-

nology. Unfortunately, this is not always the case.  

A different solution to cope with exercise- and subject-related confounders would be to cal-

culate relationships on an individual level in the form of a strength-endurance profile. That 

is, based on cross-sectional data of a single person in a specific exercise. This way, 

strength-endurance models would exclude any variance from between-subject or between-

exercise factors. The idea of modeling cross-sectional performance on an individual level 

has been frequently pursued in exercise science and sports practice. Most notably, it has 

been applied for cycling and running performance in the context of critical power and critical 

speed (Pettitt, 2016; Vanhatalo et al., 2011), as well as velocity-based resistance training 

(Benavides-Ubric et al., 2020; García-Ramos et al., 2018; García-Ramos et al., 2019; Pé-

rez-Castilla et al., 2022). As discussed in section 1.2.2.1, there have also been initial at-

tempts to model the strength-endurance relationship based on the concept of critical power. 

However, individualized modeling is not without caveats. Most importantly, models are typ-

ically calculated from a limited number of data points, especially if the performance assess-

ment cannot be repeated for multiple trials under homogeneous conditions (e.g., if the as-

sessment accumulates fatigue). A low ratio between the number of observations and the 

number of model parameters typically yields larger fluctuations in parameter estimates 

across repeated samples due to the model being overfitted (Babyak, 2004). This fact is 

commonly overlooked or underappreciated in published research on individualized models 

of physical performance. Also, individualized models may build false certainty in model va-

lidity based on measures of model fit. For example, Arakelian et al. (2017) concluded that 

for the computation of the critical load model in the leg press exercise, a sample size of 

three observations (“work bouts”) was superior to four observations because it resulted in 

a higher R² value. Similarly, Dinyer, Byrd, Vesotsky, Succi, Clasey, and Bergstrom (2019) 

inferred the applicability of the critical power model to the deadlift exercise solely based on 

the R² statistics of individualized models calculated from four observations each. In a recent 

review, Bergstrom et al. (2021) even recommended that future investigations on the topic 

should report R² and SEE statistics for each individualized model.  
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In summary, modeling the strength-endurance relationship on an individual level for a spe-

cific exercise may improve the model’s predictive accuracy and precision by eliminating 

variance resulting from exercise- or person-related confounders. However, it still needs to 

be determined if an approach of modeling strength-endurance on an individual level com-

promises predictive accuracy due to the limitations of small sample sizes.  

 

1.3 Objectives of the dissertation project 

The present thesis was designed to comprehensively investigate the idea of modeling 

strength endurance on an individual level. Research questions were defined and empirically 

evaluated to provide practitioners with an explicit directive for determining and implementing 

strength-endurance models as tools to guide programming in resistance training. All studies 

focused on the high-load range of the strength-endurance relationship (i.e., loads between 

70% and 100% 1-RM), as this range was considered most relevant to strength & condition-

ing practitioners.  

The following section will provide an overview of the three scientific articles associated with 

the current thesis and the research questions addressed by them.  

Publication #1, entitled “Modeling the Relationship between Load and Repetitions to Fail-

ure in Resistance Training: A Bayesian Analysis”, was designed to evaluate the validity of 

four commonly proposed model functions (i.e., model types) when applied to strength-en-

durance data at loads ranging from 70% to 100% 1-RM. Each function was fitted according 

to a complete-pooling structure and a multilevel structure to evaluate whether the strength-

endurance relationship is indeed characterized by individual trends. The paper’s primary 

purpose was to identify a modeling approach that provides a good fit and predictive accu-

racy while avoiding unnecessary model complexity.  

The objective of publication #2, entitled “Reproducibility of strength performance and 

strength-endurance profiles: A test-retest study”, was to investigate the robustness of the 

model functions addressed in publication #1 across test-retest trials. The paper further ad-

dresses the absolute and relative consistency of the test protocol applied in publications #1 

and #2. The paper’s primary purpose was to identify functions that yield stable parameter 

estimates over a short period of time when no, or only minimal, systematic changes are 

expected.  
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Finally, publication #3, entitled “Data Collection for Strength-Endurance Profiles: Can As-

sessments Be Completed within a Single Session?”, compared two different approaches of 

data acquisition to evaluate whether the observations required for the computation of 

strength-endurance profiles should be taken from multiple training sessions (i.e., a multi-

visit protocol, MV), or if they may be collected during a single session with prolonged rest 

periods in between trials (i.e., a single-visit protocol, SV). As a secondary objective, data 

from publication #3 were used to replicate the analysis of model functions presented in 

publication #1 to challenge the replicability of the most recent findings in a different sample.  
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ABSTRACT 

Purpose: To identify the relationship between load and the number of repetitions performed 

to momentary failure in the pin press exercise, the present study compared different statis-

tical model types and structures using a Bayesian approach.  

Methods: Thirty resistance-trained men and women were tested on two separate occa-

sions. During the first visit, participants underwent assessment of their one-repetition max-

imum (1-RM) in the pin press exercise. On the second visit, they performed sets to momen-

tary failure at 90%, 80% and 70% of their 1-RM in a fixed order during a single session. The 

relationship between relative load and repetitions performed to failure was fitted using linear 

regression, exponential regression and the critical load model. Each model was fitted ac-

cording to the Bayesian framework in two ways: using an across-subjects pooled data struc-

ture and using a multilevel structure. Models were compared based on the variance ex-

plained (R²) and leave-one-out cross-validation information criterion (LOOIC).  

Results: Multilevel models, which incorporate higher-level commonalities into individual re-

lationships, demonstrated a substantially better fit (R²: 0.97 – 0.98) and better predictive 

accuracy compared to generalized pooled-data models (R²: 0.89 – 0.93). The multilevel 2-

parameter exponential regression emerged as the best representation of data in terms of 

model fit, predictive accuracy and model simplicity.   

Conclusion: The relationship between load and repetitions performed to failure follows an 

individually expressed exponential trend in the pin press exercise. To accurately predict the 

load that is associated with a certain repetition maximum, the relationship should therefore 

be modeled on a subject-specific level. 

 

Key Words (4-6): strength-endurance continuum; repetition maximum; maximum number 

of repetitions; prediction; critical load 

 

1. INTRODUCTION 

Modeling the relationship between exercise intensity and the maximum amount of realizable 

physical work has been an increasingly addressed objective in sports science (1). In re-

sistance training, this relationship has previously been characterized by the term “strength-

endurance continuum” (2) and can be described for a given exercise by modeling the ex-

ternal load as a function of the number of repetitions performed to momentary failure (RTF) 

(e.g., 3,4). Precise knowledge about the interrelation between these two variables can be 
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beneficial in various ways. First, it would enable the comprehensive determination of a per-

son’s exercise-specific physical fatigability in dependence of the external load. In contrast 

to previously documented methods of assessing strength endurance (5), this approach may 

yield a descriptive indicator that is not limited to a single load, but rather describes fatigue 

resistance across a wide spectrum of loads (i.e., a “strength-endurance profile”). Second, it 

would enable the prediction of the maximum external load a person can move in a given 

exercise for any given number of repetitions. This involves the concept of estimating the 

one-repetition maximum (1-RM) based on the RTF that can be achieved at a submaximal 

load, which has been frequently investigated over the past decades (3,4,6–10). Third, it 

would enable certain methods of resistance training prescription, like the standardization of 

muscular exhaustion based on a predicted training maximum, a prescriptive approach 

which has been referred to as “relative intensity of set-repetition best” (11,12). Previous 

studies that intended to model the relationship between external load and RTF mainly fo-

cused on applying across-subject regressions by means of either linear (3,7,13,14) or ex-

ponential models (3,4,15,16). However, there is evidence suggesting that the strength-en-

durance relationship may succumb to considerable interindividual differences attributed to 

numerous factors, such as specificity to the tested exercise (3,17), movement cadence 

(15,18) as well as the athletes’ training experience (6,10,17) and training background 

(16,19). Considering these potential confounders, one could argue that any statistical mod-

eling approach that generalizes the relationship across different subjects without accounting 

for subject heterogeneity (i.e., “complete-pooling models”) may result in a suboptimal rep-

resentation of the strength-endurance relationship, therefore impeding both the fit and pre-

dictive accuracy of such models. Indeed, independent validation studies predominantly re-

ported noticeable inaccuracy of 1-RM predictions based on complete-pooling models, es-

pecially when using lower relative loads (3,8–10,20). Several researchers have sought to 

overcome this issue and improve model validity by transposing the concept of critical power 

(21) to dynamic resistance training (1,22). The so-called critical load model, also referred to 

as critical lift or critical resistance model, introduced the idea of modeling strength endur-

ance on an individual level (i.e., “no-pooling models”) rather than a group-level, therefore 

treating the individual as the population of interest. While this concept may provide a valu-

able alternative for when data availability is limited, it should still be treated with caution in 

scientific research, since it implies a higher potential to overfit data (23). A more promising 

solution may be expected by applying a multilevel model (i.e., “mixed model”, also called 

“hierarchical model” or “partial pooling model”) to the strength-endurance relationship, in-

cluding both, group-level and subject-level parameters (23). In particular, the use of Bayes-

ian multilevel modeling seems promising, as simulation research has shown Bayesian pa-
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rameter estimation to be more accurate than maximum likelihood estimation in small sam-

ples (24). However, it has yet to be evaluated whether a multilevel modeling approach yields 

an advantage over the complete-pooling approach that has been primarily applied in re-

search thus far. Furthermore, proposed models (linear regression, exponential regression, 

and critical load model) have yet to be compared among each other to determine which one 

provides the most appropriate representation of the strength-endurance relationship. The 

present study was designed to address these two issues using the example of the pin press 

exercise, which can be considered a variant of the bench press, in a resistance-trained 

population. Results will help to improve understanding of the relationship between load and 

RTF across a high-load range. 

 

2. MATERIALS AND METHODS 

2.1 Participants 

Nineteen men and eleven women with previous experience in resistance training voluntarily 

participated in the investigation. Descriptive characteristics of participants are summarized 

in Table 1. Inclusion criteria were: (a) being free of illness and injury, (b) being between 18 

and 40 years of age, (c) having at least one year of regular training experience in the bench 

press exercise and (d) achieving a minimal relative 1-RM in the pin press of 1x body mass 

(men) or 0.75x body mass (women). Subjects were informed about benefits and potential 

risks related to their participation, completed a modified Physical Activity Readiness Ques-

tionnaire and signed an informed consent form prior to undergoing any test. All procedures 

were implemented in accordance with the ethical guidelines of the Declaration of Helsinki 

and approved by a local ethical review committee (no. 00461).  

 

2.2 Experimental design 

Participants attended the laboratory on two days, separated by approximately 48 hours. On 

day 1, subjects were assessed for body mass and height using a scale (Seca Model 877; 

SECA GmbH & Co. KG., Hamburg, Germany) and stadiometer (Seca Model 217; SECA 

GmbH&Co. KG., Hamburg, Germany). Afterwards, they were familiarized with the execu-

tion of the free-weight pin press exercise and followed a progressive loading test to deter-

mine their individual 1-RM. On day 2, participants completed sets to momentary failure at 

submaximal loads in descending order. Subjects were instructed to refrain from strenuous 

exercise and alcohol 24 hours before tests and not to consume caffeine 6 hours prior to 
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testing. The exercise was performed in a Competition Combo Rack approved by the Inter-

national Powerlifting Federation using a 20-kg barbell and calibrated weight plates (Eleiko, 

Halmstad, Sweden).  

 
Table 1. Subject characteristics 

 Male (n=19) Female (n=11) 

Age (y) 27.4 ± 3.7 [21.2 - 33.6] 26.9 ± 5.2 [20.2 - 35.9] 

Experience in BP (y) 7.6 ± 3.0 [3.0 - 15.0] 3.5 ± 2.6 [1.0 - 10.0] 

Height (cm) 180.9 ± 5.4 [171.5 - 191.6] 163.1 ± 5.1 [154.3 - 171.0] 

Body mass (kg) 85.4 ± 7.2 [69.2 - 96.9] 63.4 ± 4.4 [55.2 - 69.7] 

1-RM (kg) 112.2 ± 13.6 [85.0 - 142.5] 61.4 ± 10.0 [50.0 - 80.0] 

Relative 1-RM (kg‧kg-1) 1.32 ± 0.12 [1.15 - 1.50] 0.98 ± 0.19 [0.77 - 1.31] 

RTF at 90%1-RM (n) 4.3 ± 0.9 [3.0 - 6.0] 4.3 ± 1.3 [2.0 - 6.0] 

RTF at 80%1-RM (n) 7.6 ± 1.3 [5.0 - 10.0] 8.4 ± 1.6 [6.0 - 11.0] 

RTF at 70%1-RM (n) 12.1 ± 2.4 [7.0 - 16.0] 13.1 ± 2.1 [9.0 - 15.0] 

Data are presented as mean ± SD [min - max].  

BP, bench press; 1-RM, one-repetition maximum in the pin press; RTF, repetitions 

performed to momentary failure in the pin press. 

 

To provide participants a safe testing environment for performing sets to momentary failure 

and to reduce potential variability in RTF resulting from an inconsistent use of the stretch-

shortening cycle, the pin press was executed according to the following movement specifi-

cations: in each repetition, subjects were required to lower the barbell onto two safety pins 

adjusted to a height that would allow for a distance between the barbell’s lowest position 

and the participant’s chest of up to 3 cm. Upon having the barbell come to rest on the safety 

pins, a researcher would provide the command “Press!”, ordering the subject to perform the 

concentric phase of the movement at maximum intended velocity until reaching full exten-

sion of their elbows. When multiple repetitions were executed within a set performed to 

momentary failure, participants were further instructed to autonomously minimize the time 

holding the barbell with extended elbows in between repetitions in order to reach the point 

of momentary failure as quickly as possible. Throughout each set, they had to maintain their 

feet’s position on the floor and keep their hip, shoulders and head in contact with the bench. 
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A linear position transducer (GymAware Power Tool, Kinetic Performance Technologies, 

Canberra, Australia) was used to record mean concentric barbell velocity, to provide testers 

with feedback during the 1-RM assessment and help selecting appropriate load increments. 

The accuracy of the device has been scientifically validated before (25) and its use for the 

assessment of mean velocity has been reported to provide good test-retest reliability 

(26,27). 

 

2.3 One-repetition maximum assessment (day 1) 

Participants followed a standardized general warm-up including 5 min of stationary cycling 

(Kettler X1, Trisport, Huenenberg, Switzerland) at a cadence of about 80 rpm and a con-

stant power output of 1 W per kg body mass. Subsequently they completed 2 min of un-

loaded dynamic mobilization exercises comprising circumduction of the shoulders, flexion 

and extension of the elbows and circumduction of the wrists, followed by 10 repetitions of 

axial external rotation of the humerus against light elastic resistance. In the next step, sub-

jects were required to estimate their 1-RM in the pin press, considering the previously de-

scribed specifications for movement execution. A progressive loading scheme was applied 

to slowly approach the true 1-RM, using loads equivalent to 25%, 50%, 75%, 85% and 95% 

of the estimated 1-RM. The number of repetitions performed at each load and passive rest 

in between sets were standardized according to an established autoregulatory procedure 

(25,28) that bases set configurations on the achieved barbell velocity of the preceding set, 

which has been considered a good predictor of the actually applied relative load (29). The 

rationale for employing this autoregulatory approach was to rudimentarily account for the 

possibility of subjects under- or overestimating their 1-RM and, consequently, being as-

signed an inadequate combination of actual warm-up loads, repetition numbers and rest 

periods that might result when assigning fixed values to inaccurate subjective estimates. 

Participants initially performed three repetitions with a 3 min break in between sets. Volume 

was adapted to two repetitions accompanied by a 4 min break, once mean velocity dropped 

below 1.0 m·s-1, and further reduced to a single repetition accompanied by 5 min of rest, 

once mean velocity fell below 0.65 m·s-1. Rest intervals were chosen corresponding to those 

reported for highly reliable 1-RM test protocols (30). After completing 95% of their estimated 

1-RM, load increments were selected individually based on the participant’s subjective feed-

back and achieved mean barbell velocity. Larger individual load increments of 2.5 to 10 kg 

were selected as long as the achieved mean concentric barbell velocity of the preceding 

attempt was above 0.2 m·s-1, which corresponds to recently reported norm values (mean + 

one standard deviation) of the velocity achieved at the 1-RM in the bench press (29). Small 

load increments of 2.5 kg were selected once mean concentric barbell velocity fell below 
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0.2 m·s-1. The test was terminated once a subject could no longer press an assigned load 

across the full range of motion, suggesting that the 1-RM had been reached. On average, 

subjects required 2.5 ± 1.4 attempts to determine their 1-RM and reached a velocity at 1-

RM of 0.13 ± 0.04 m·s-1. 

 

2.4 Repetitions to failure assessment (day 2) 

Participants were tested for the RTF in the pin press at loads corresponding to 90%, 80% 

and 70% of the previously determined 1-RM. Each RTF test was initiated by the same gen-

eral warm-up applied for the 1-RM assessment on day 1. Subsequently, subjects completed 

three specific warm-up sets in the pin press, comprising three repetitions at 25%, three 

repetitions at 50% and two repetitions at 75% 1-RM. 3 min of rest were provided in between 

warm-up sets and 5 min of rest prior to each test to momentary failure. A test to momentary 

failure was terminated once the participant attempted to complete the concentric phase of 

a current repetition, but was unable to do so (31). To increase efficiency of data acquisition 

and, thus, limit participant drop out, the test protocol for the RTF assessment was designed 

for implementation within a single visit. Therefore, two methodological specifications were 

applied in order to minimize negative effects of accumulating fatigue on the completed RTF. 

First, the sequence of tested loads was fixed in a declining manner (i.e. set 1: 90%, set 2: 

80%, set 3: 70% 1-RM), as research suggests that fatigue is more prevalent after sets per-

formed to failure at lighter loads compared to heavier loads (32). Second, subjects were 

granted a prolonged period of rest in between sets to failure (33). For this purpose, each 

set to momentary failure was immediately followed by 5 min of passive rest. After that, sub-

jects completed the general and specific warm-up described above in order maintain posi-

tive warm-up effects. This yielded an approximate 22 min in between sets to failure, while 

applying the same preparatory measures before each test.  

 

2.5 Statistical modeling 

The following four model types were used to quantify the relationship between load (ex-

pressed as a percentage of the 1-RM) as the dependent variable, and RTF as the inde-

pendent variable:  
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Lin: 𝑙𝑜𝑎𝑑 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝒂 + 𝒃 ∙ 𝑅𝑇𝐹, 𝜎²)        [1] 

Ex2: 𝑙𝑜𝑎𝑑 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝒂 ∙ 𝑒(𝒃 ∙ 𝑅𝑇𝐹), 𝜎²)       [2] 

Ex3: 𝑙𝑜𝑎𝑑 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝒄 + 𝒂 ∙ 𝑒(𝒃 ∙ 𝑅𝑇𝐹), 𝜎2)       [3] 

Crit: 𝑙𝑜𝑎𝑑 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (𝑳′/(𝑅𝑇𝐹 − 𝒌) + 𝑪𝑳, 𝜎²)      [4] 

 

 

 

Figure 1. Illustrative examples of the investigated model types and descrip-

tion of model parameters. Solid black lines display model functions (extended 

slightly below 0); solid grey lines display the y-axis at x=0; dashed grey lines 

display the vertical (k) and horizontal asymptote (CL) of the critical load 

model; intercepts mark the intersection of the model function and the y-axis 

at x=0; Lin, linear regression model; Ex2, exponential 2-parameter regres-

sion model; Ex3, exponential 3-parameter regression model; Crit, critical load 

model.  
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The linear model (Lin, equation 1) describes the relationship as a simple 2-parameter linear 

regression, which has been assumed to be a convenient approximation at a high-load range 

(3,7,13,14). The model contains an additive intercept parameter a and a slope coefficient 

b. The exponential regression model (Ex2, equation 2, and Ex3, equation 3) describes a 

curvilinear relationship between variables. Previous research predominantly advocated ex-

ponential models in the form of equation 3, featuring a multiplicative parameter a, an expo-

nential curvature parameter b and an additive parameter c (3,4,15,16). However, we also 

included equation 2 as a simplified version of equation 3 that omits the additive parameter 

c (8). Ultimately, equation 2 can be rearranged to a simple linear regression model by ap-

plying a natural log transformation to the dependent variable, making the model easily com-

putable. Finally, the critical load model (Crit, equation 4) entails a hyperbolic relationship 

between the variables (1,22). The model comprises a curvature parameter L’, a vertical 

asymptote parameter k and a horizontal asymptote parameter CL. An illustrative description 

of model functions is provided in Figure 1. 

 

2.6 Model fitting 

Each model type (equations 1 to 4) was fitted according to two different model structures: 

first, a complete-pooling model (CPM) was calculated, including all data and containing only 

fixed effects, therefore not accounting for interindividual differences. Second, a multilevel 

model (MLM) was calculated, which, in addition to fixed effects, also added random effects 

for each subject. This implies that for the multilevel models, every subject-level parameter 

was fitted to the data of a single participant, assuming a higher-level group distribution of 

the respective parameter. For instance, it was assumed that a generic subject-level param-

eter “x” was drawn from a group-level normal distribution with the mean “μx” and variance 

“σx²”, namely, x ~ Normal (μx, σx²). The possibility of correlated parameter structures within 

every multilevel model was accounted for by introducing a covariance matrix for the respec-

tive model’s subject-level parameters. Therefore, eight different models were fitted that dif-

fered in model type (Lin, Ex2, Ex3, Crit) and structure (CPM, MLM).  

Data analysis was conducted following a Bayesian approach, using the probabilistic pro-

gramming language Stan (34), version 2.21.0, to estimate parameter distributions. Weakly 

informative priors were selected for variance parameters and the covariance matrix. Priors 

for the group-level parameters (fixed effects) of each model were defined by moment-

matching a normal distribution to the posteriors of a preceding pilot study done on a sepa-

rate sample of eight subjects. A prior sensitivity analysis was conducted to identify an ap-

propriate scaling factor that would mitigate the influence of priors on posterior distributions, 
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thus ensuring that pilot-derived priors were minimally informative. Further details on the pilot 

sample, prior selection and the sensitivity analysis are provided online (Supplemental digital 

material 1). Furthermore, sampling details and Stan codes are available online to enhance 

analytical reproducibility (Supplemental digital material 2).  

 

2.7 Model evaluation 

Models were compared in terms of model fit and model predictive accuracy. The model fit 

was analyzed by calculating a Bayesian R² distribution (35) and interpreted according to the 

Maximum a Posteriori estimate (MAP) and the 90% Highest Density Interval (HDI) (36). 

Differences between R² posterior distributions were analyzed and interpreted according to 

their probability density overlap (∩R²) and deemed “substantial” for ∩R² ≤ 5%. Model pre-

dictive accuracy was evaluated by calculating the expected log predictive density and con-

verting it into a measure of deviance labelled LOOIC (37), whereas smaller values of LOOIC 

indicate higher predictive validity. Differences in LOOIC between models (ΔLOOIC) were 

complemented with an estimated standard error of difference (SE) (37) and considered to 

be substantial if they exceeded 4x the SE. In cases of model comparisons not indicating 

substantial differences in model fit or predictive accuracy, models were further evaluated 

according to their simplicity. Under respective circumstances, the logical principle of Oc-

cam’s razor advocates that models with fewer parameters should be considered as more 

efficient. Posterior analysis was completed using R version 4.0.5 and the R packages 

bayestestR and loo.  

 

3. RESULTS 

In all cases, the multilevel model resulted in a substantially better model fit compared to 

their complete-pooling counterpart (∩R² < 0.1% for all comparisons). Ex3 provided the high-

est R² among complete-pooling models, being substantially different from Lin (∩R² < 0.1%), 

but not from Ex2 (∩R² = 6.5%) and Crit (∩R² = 88.5%). The multilevel variant of Crit showed 

the best overall model fit, albeit not being substantially different from other multilevel models 

(∩R² = 13.6 - 90.6%). Posterior distributions for R² are displayed in Figure 2. Every multi-

level model further provided a substantially higher predictive accuracy when compared to 

its complete-pooling counterpart. Ex3 resulted in the lowest LOOIC among complete-pool-

ing models, indicating a substantial difference from Lin (ΔLOOIC ± SE = 49.5 ± 9.5), but not 

from Ex2 (ΔLOOIC ± SE = 26.6 ± 7.0) and Crit (ΔLOOIC ± SE = 1.9 ± 1.5). Across multilevel 

models, Ex3 provided the highest predictive accuracy, although LOOIC was not substan-

tially different from Lin (ΔLOOIC ± SE = 41.8 ± 14.4), Ex2 (ΔLOOIC ± SE = 2.7 ± 7.8) and 
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Crit (ΔLOOIC ± SE = 6.5 ± 2.2). Overall, the multilevel variant of Ex2 emerged the most 

efficient model (Figure 3) due to its distinct similarity to the multilevel variants of Ex3 and 

Crit in terms of model fit and predictive accuracy, while relying on fewer parameters. Fur-

thermore, it yielded substantially better predictive accuracy (ΔLOOIC ± SE = 39.0 ± 7.4) 

compared to the multilevel variant of Lin. Statistics for model evaluation are summarized in 

Table 2. 

 

Figure 2. Comparison of model fit (R² posterior distributions). Dark grey 

distributions illustrate multilevel models; light grey distributions illustrate 

complete-pooling models; points represent maximum a posteriori (MAP) 

estimates; error bars display 90% highest density intervals (HDIs). Lin, 

linear regression model; Ex2, exponential 2-parameter regression 

model; Ex3, exponential 3-parameter regression model; Crit, critical load 

model.  
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Table 2. Comparison of 8 models, ranked from best to worst model performance 

Rank Model n_Pg (n_Ps) ΔLOOIC SE R² MAP [90% HDI] 

1 Ex2 [MLM] 2 (60) 0.0 0.0 0.980 [0.976; 0.982] 

2 Ex3 [MLM] 3 (90) -2.7 8.0 0.980 [0.977; 0.983] 

3 Crit [MLM] 3 (90) 3.8 7.3 0.981 [0.976; 0.983] 

4 Lin [MLM] 2 (60) 39.0* 7.4 0.972 [0.967; 0.976] 

5 Ex3 [CPM] 3 (0) 104.4* 17.7 0.931 [0.923; 0.934] 

6 Crit [CPM] 3 (0) 106.3* 17.8 0.930 [0.922; 0.934] 

7 Ex2 [CPM] 2 (0) 131.0* 18.0 0.915 [0.905; 0.920] 

8 Lin [CPM] 2 (0) 153.9* 16.9 0.894 [0.882; 0.901] 

Models are ranked according to their fit, predictive accuracy and simplicity. 

n_Pg, number of group level parameters (fixed effects); n_Ps, number of subject level 

parameters (random effects); ΔLOOIC, difference in LOOIC compared to the most effi-

cient model Ex2 [MLM] (lower values indicating better predictive performance, * indicat-

ing a substantial difference); SE, standard error of the difference in LOOIC; R², variance 

explained; MAP, Maximum a Posteriori estimate; HDI, Highest Density Interval. 

Ex2, exponential 2-parameter regression model; Ex3, exponential 3-parameter regres-

sion model; Crit, critical load model; Lin, linear regression model; MLM, multilevel struc-

ture; CPM, complete-pooling structure. 

 

 

Posterior distributions of group-level parameters (fixed effects) and subject-level parame-

ters (random effects) calculated for the multilevel Ex2 model are displayed in Figure 4. 

Group-level parameters were estimated at 102.76 (90% HDI = [102.24, 103.29]) for the 

intercept a and at -0.032 (90% HDI = [-0.034, -0.030]) for the curvature parameter b. Sub-

ject-level parameters yielded homogeneous estimates for the intercept (between-subject 

coefficient of variation [90% HDI] = 0.1% [0.0, 0.9]), but considerable variance for the cur-

vature parameter (between-subject coefficient of variation [90% HDI] = 19.7% [15.4, 25.9]).  
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4. DISCUSSION 

The objective of the present study was to investigate the relationship between external load 

and the RTF in the pin press exercise. In contrast to the greater part of published research 

on the topic, we did not confine our analysis to a single proposed model, but rather included 

several previously documented models to address two major issues: first, we aimed to de-

termine whether a modeling approach that expresses individual relationships with higher-

level commonalities (i.e. a multilevel model structure) offers substantial advantages in com-

parison to the traditional modeling approach that pools data without differentiation between 

subjects. Second, we compared four different models (equations 1 to 4) to identify which 

one provides the best approximation to the relationship in terms of model fit and predictive 

accuracy. Analysis was conducted using a sampling-based Bayesian method, which is con-

sidered helpful in situations with relatively small samples (24). In addition, Bayesian meth-

ods allow the inclusion of prior information into the parameter estimation process, which 

may be beneficial to a priori rule out improbable values, given that adequate prior 

knowledge about parameters is available. Our findings yield further insight into latent struc-

tures of the strength-endurance continuum and provide practitioners with a novel and more 

accurate approach to calculate loads corresponding to a given repetition maximum.   

 

4.1 Multilevel vs. complete-pooling models 

To the best of our knowledge, this was the first investigation to compare pooled data mod-

eling on the relationship between relative load and the RTF to a multilevel approach that 

specifies parameter expressions on an individual level. Complete-pooling model structures 

demonstrated both, a worse model fit and lower predictive accuracy compared to multilevel 

model structures, which may be attributed to noticeable variance of the RTF at lower relative 

loads (Figure 4). These results support the assumption that traditionally communicated 

models deploying only group-level parameters (e.g., 3,4,7,14–16) do not sufficiently ac-

count for interindividual variation in the RTF that can be performed at a given relative load. 

Practitioners who apply respective models drawn from literature should be conscious of a 

potential estimation error, especially at lighter loads. Improved predictive accuracy can be 

expected by modeling the relationship between load and RTF on an individual level based 

on subject-specific data. However, application of this concept requires practitioners to as-

sess the RTF at multiple different loads under comparable psycho-physiological conditions.  
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4.2 Linear vs. exponential vs. critical load models 

Based upon our findings, the strength-endurance continuum appears to follow a curvilinear 

trend at loads of 70% 1-RM and higher, which can be modeled effectively using an expo-

nential regression or the critical load model. The results are in accordance with earlier pub-

lications comparing linear to 3-parameter exponential regression models, whereas authors 

reported a better across-subject fit for the nonlinear model, as indicated by the variance 

explained (R²) and standard error of estimate (3,16). In the present study, the 3-parameter 

exponential model (equation 3), that has been previously proposed on numerous occasions 

(3,4,15,16) showed a slightly better model fit and predictive accuracy than its 2-parameter 

alternative (equation 2) for the pooled-data fit, although the difference was not deemed 

substantial. In case of the multilevel fit, equation 2 resulted in exceptionally similar estimates 

of R² and LOOIC. Despite our analysis not showing a statistical advantage of the 2-param-

eter exponential regression model, it exceeds both the 3-parameter exponential regression 

model and the critical load model in terms of simplicity, as indicated by the number of model 

parameters. Therefore, we endorse that applying the 2-parameter exponential regression 

model to subject-specific data yields the best representation of a person’s strength-endur-

ance relationship, without adding unnecessary complexity to the model.  

 

4.3 Parameter analysis 

Subject-level intercepts of the 2-parameter exponential regression model (parameter a in 

equation 2) only showed a small deviation from the group-level parameter, which may be 

attributed to load being normalized to the individual 1-RM. However, the curvature param-

eter (b in equation 2) showed considerable variation between subjects, suggesting that it 

may constitute the main influence on the individual manifestation of the strength-endurance 

relationship. Therefore, future studies should consider employing a comprehensive analysis 

on potential confounders that may affect estimates of the curvature parameter. While an 

additional evaluation of model parameters was beyond the scope of the present study, an 

exploratory analysis of subject characteristics and their effect on subject-level parameters 

is provided online for interested readers (Supplemental digital material 3).  

 

4.4 Limitations 

Readers should consider that the present study investigated the strength-endurance rela-

tionship only in the specific case of the pin press using a highly controlled exercise tech-

nique without standardizing movement cadence. Hence, the multilevel 2-parameter expo-

nential regression may not necessarily provide the best approximation for other exercises 
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that follow a different distribution of the RTF across loads, which questions the transferability 

of the present findings to a standard touch-and-go bench press. Additionally, our findings 

only cover for relative loads of 70% 1-RM and above, therefore neglecting model validity at 

lower loads. Finally, models were calculated based on data acquired during two visits, 

whereas tests to momentary failure were exclusively conducted during the second visit with-

out randomizing the order of tests. Therefore, the possibility of an order effect influencing 

the acquired data cannot be ruled out. While a similar approach to single-visit testing with 

a fixed order of trials has recently been proposed for the valid assessment of critical power 

(38), our data provide no conclusion whether subjects truly initiated each set to momentary 

failure under fully rested conditions. Future research should therefore target two important 

objectives: first, different methodological approaches of assessing RTF at multiple loads 

should be compared and it should be evaluated how they influence the estimated strength-

endurance relationship on a subject-level (e.g., effects of single-visit vs. multiple-visit data 

acquisition). Second, the multilevel relationship between load and RTF should be investi-

gated using a variety of exercises with less restrictive movement specifications, including 

the touch-and-go bench press. 

 

5. CONCLUSION 

The present study supplies evidence that the strength-endurance continuum, described by 

the relationship between relative load and the number of repetitions performed to failure, 

displays substantial interindividual variation. Practitioners and researchers can address this 

issue by modeling the relationship on an individual level, whereas the 2-parameter expo-

nential regression evidently constitutes the most efficient model for this purpose in the pin 

press exercise.  
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ABSTRACT 

The present study was designed to evaluate the test-retest consistency of repetition maxi-

mum tests at standardized relative loads and determine the robustness of strength-endur-

ance profiles across test-retest trials. Twenty-four resistance-trained males and females 

(age, 27.4 ± 4.0 y; body mass, 77.2 ± 12.6 kg; relative bench press one-repetition maximum 

[1-RM], 1.19 ± 0.23 kg•kg-1) were assessed for their 1-RM in the free-weight bench press. 

After 48 to 72 hours, they were tested for the maximum number of achievable repetitions at 

90%, 80% and 70% of their 1-RM. A retest was completed for all assessments one week 

later. Gathered data were used to model the relationship between relative load and repeti-

tions to failure with respect to individual trends using Bayesian multilevel modeling and ap-

plying four recently proposed model types. The maximum number of repetitions showed 

slightly better reliability at lower relative loads (ICC at 70% 1-RM = 0.86, 90% highest den-

sity interval: [0.71, 0.93]) compared to higher relative loads (ICC at 90% 1-RM = 0.65 [0.39, 

0.83]), whereas the absolute agreement was slightly better at higher loads (SEM at 90% 1-

RM = 0.7 repetitions [0.5, 0.9]; SEM at 70% 1-RM = 1.1 repetitions [0.8, 1.4]). The linear 

regression model and the 2-parameters exponential regression model revealed the most 

robust parameter estimates across test-retest trials. Results testify to good reproducibility 

of repetition maximum tests at standardized relative loads obtained over short periods of 

time. A complementary free-to-use web application was developed to help practitioners cal-

culate strength-endurance profiles and build individual repetition maximum tables based on 

robust statistical models.  

 

INTRODUCTION 

Dynamic strength endurance has previously been defined as the amount of concentric work 

an individual can produce in a cyclic or repetitive movement [1]. Assuming that the range of 

motion is approximately constant for each repetition of a given resistance training exercise, 

strength endurance can therefore be described by the number of repetitions performed to 

momentary failure (RTF) at a given load for a single sustained trial [1, 2]. The evaluation of 

strength endurance by means of a repetition maximum test (occasionally also called repe-

tition endurance test) usually involves an exercise being performed to momentary failure at 

either a fixed absolute load, expressed in a unit of mass like kg or lbs, or a fixed relative 

load that has been normalized to the exercise-specific one-repetition maximum (1-RM). The 

concept is widely applied by coaches to guide resistance training programming [1, 3, 4]. 

However, given the fact that resistance training is usually carried out across a wider spec-

trum of loads, assessing the RTF an individual can execute at a single load only provides 
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limited insight into a person’s fatigue resistance. More meaningful insights into strength en-

durance could be obtained by studying the relationship between load and RTF (i.e., the 

individual “strength-endurance profile”). Additionally, knowledge of the mathematical rela-

tionship between the two variables could be used by practitioners to predict the load asso-

ciated with a certain repetition maximum. This may be of particular interest for individuals 

seeking to control intensity of effort within a set [5] by prescribing a certain percentage of 

the maximum load that can be used for a given number of repetitions [6]. While other meth-

ods have been proposed to evaluate or control intensity of effort based on perceived effort 

or movement velocity [7], an approach using strength-endurance profiles might overcome 

certain limitations of these methods. Such limitations include inappropriate anchoring of 

perception [5], inaccurate subjective estimates of repetitions in reserve at lower intensity of 

effort [8] and dependency on technology to provide reliable feedback on movement velocity 

[9]. 

The relationship between load and RTF can be expressed through simple bivariate models. 

Thus far, research has proposed models that describe either a linear [10–12] or an expo-

nential relationship [11–14]; usually, the respective model equations are then rearranged to 

predict the 1-RM from a repetition maximum test. However, studies conducted to test the 

validity of these equations often showed poor predictive accuracy, especially when the ap-

plied repetition maximum test was executed at loads allowing for 10 repetitions or more [3, 

12, 13, 15–17]. The poor validity may be related to substantial inter-individual differences in 

strength-endurance relationships that models not incorporating the responsible confound-

ing factors fail to account for. Indeed, there is evidence that the amount of repetitions that 

can be performed at a given relative load, and hence the strength-endurance relationship, 

may depend on various factors, such as qualitative and quantitative training background 

[11, 18–20], fiber type composition and the capillary density of involved muscles [21, 22], 

exercise [12, 19, 23] and movement cadence [14, 24]. A possible solution to overcome 

these challenges in modeling strength-endurance relationships has been proposed by Mor-

ton and colleagues [25] who introduced the idea of creating subject-specific models, thereby 

treating the individual person as the population of interest. For this purpose, the authors 

reformulated the critical power model originally proposed by Monod and Scherrer [26] such 

that it may be applied to isoinertial resistance training exercises. The resulting model has 

recently been referred to as critical load model and was originally presented as a non-linear 

function featuring three parameters [25, 27].  

While the individualized modeling approach may reduce variance resulting from uncon-

trolled confounding variables, such models are typically estimated from a limited number of 

available data due to the exhaustive nature of sets performed to failure [25, 27]. Hence, the 



 

71 

estimation of model parameters can be strongly affected by variability in test results, as 

single data points tend to have a larger influence on parameter estimates in small samples 

compared to large samples. Therefore, the robustness of individual strength-endurance 

models over short periods is crucial for their application in practice. The present study was 

designed to target two objectives: 1) to evaluate the consistency of the RTF at standardized 

relative loads and 2) to compare the reproducibility of four recently proposed models de-

scribing the individual strength-endurance relationship. A complementary, freely available 

web application will be provided to allow practitioners to easily calculate strength-endurance 

profiles based on a model that can be considered sufficiently robust to help with the design 

and regulation of resistance training programs.  

 

MATERIALS AND METHODS 

Subjects 

Fifteen resistance-trained men (age = 27.2 ± 3.3 yrs, body mass = 85.4 ± 7.9 kg, bench 

press 1-RM/body mass = 1.33 ± 0.11 kg•kg-1) and nine resistance-trained women (age = 

27.7 ± 5.2 y, body mass = 63.6 ± 3.3 kg, bench press 1-RM/body mass = 0.96 ± 0.17 kg•kg-

1) volunteered to be tested for the present study. In order to participate, subjects had to be 

between 18 and 40 years of age, free of illness and injury and have at least one year of 

training experience in the bench press exercise as well as a 1-RM corresponding to at least 

1x body mass for men and 0.75x body mass for women, respectively. Prior to physical 

testing, participants were informed about the possible risks, had to complete a modified 

physical activity readiness questionnaire (PAR-Q) and sign an informed consent form. The 

study was designed in fulfillment of the ethical guidelines communicated in the Declaration 

of Helsinki and approved by the host institution’s local ethical committee (no. 00461).  

 

Experimental approach 

A test-retest design was used to determine the participants’ maximum strength and 

strength-endurance at high loads in the free-weight bench press exercise on two occasions 

(T1 & T2) separated by one week (Figure 1). Maximum strength was assessed according 

to a progressive 1-RM test. Strength-endurance was assessed using repetition maximum 

tests at 90%, 80% and 70% of the 1-RM, respectively. In order to provide some rest, the 1-

RM test and the repetition maximum tests were executed on two different days, separated 

by 48 to 72 hours, resulting in a total of four visits to the laboratory within 11 days. Im-

portantly, the relative loads applied for the repetition maximum tests during the fourth visit 
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were adjusted to the 1-RM achieved during the third visit. Consequently, a change in the 1-

RM between T1 and T2 also implied a change in the absolute load used for the repetition 

maximum tests at T2, in order to ensure that trials were performed at 90%, 80% and 70% 

of the current 1-RM. All tests were completed at the same time of day. 

 

 

Fig 1. Experimental design. 1-RM, one-repetition maximum; RTF, repetitions performed 

to momentary failure.  

 

Procedures 

On the first day, subjects completed preliminary health screening and filled in a physical 

activity form to evaluate their experience with the tested exercise. Body height and body 

mass were assessed using a stadiometer (Seca Model 217; SECA GmbH & Co. KG., Ham-

burg, Germany) and scale (Seca Model 877; SECA GmbH & Co. KG., Hamburg, Germany). 

Participants then completed a standardized warm-up consisting of cycling for 5 min at a 

constant power output of 1 W per kg body mass and a rotational velocity of 80 rpm on an 

ergometer (Kettler X1, Trisport, Huenenberg, Switzerland), followed by a brief dynamic up-

per body mobilization routine. Subsequently, they were familiarized with the standardized 

movement technique for the bench press: each subject had to lower the barbell onto two 



 

73 

safety pins, which were individually adjusted to a height that would allow for up to 3 cm of 

vertical distance between the bottom barbell position and the subject’s chest. An experi-

enced staff member visually ensured that the barbell was placed on the safety pins without 

rebound, before giving the verbal command “Press!”, signaling the subject to execute the 

concentric phase of the bench press at maximum voluntary velocity. Participants were re-

quired to maintain their hip, shoulders and head positioned on the bench and their feet 

placed on the floor during each set.  

Upon completion of the familiarization, participants were requested to estimate their 1-RM 

based on self-evaluation of their recent training performance. The subsequent 1-RM test 

featured a progressive loading pattern with the first five loads being fixed at 25%, 50%, 

75%, 85% and 95% of the estimated 1-RM, while mean concentric barbell velocity was 

recorded with a linear position transducer (GymAware Power Tool, Kinetic Performance 

Technologies, Canberra, Australia). In the initial set, three repetitions were performed, fol-

lowed by a 3-min break. Two repetitions were performed once the highest achieved velocity 

of the preceding set fell below 1.0 m/s, followed by a 4-min break and single repetitions 

were performed once it fell below 0.65 m/s, followed by a 5-min break. After successfully 

completing 95% of the estimated 1-RM, loads were increased individually to approximate 

the true 1-RM. The 1-RM was considered to be determined once a load increment of 2.5 kg 

from the preceding set would no longer allow the subject to complete the exercise across 

the full range of motion.  

Repetition maximum tests were completed at 90%, 80% and 70% of the identified 1-RM, 

respectively, in the form of a single-visit protocol. Barbell loads were not randomized, but 

prescribed in a descending scheme, to minimize systematic effects of accumulated fatigue 

on the performance during subsequent sets [28]. In order to provide extended time for re-

covery in between repetition maximum tests, yet sustain warm-up effects during these pe-

riods, participants underwent the same general warm-up procedure that was used for the 

1-RM test prior to each set to failure. Additionally, they performed a specific warm-up in-

cluding three repetitions at 25%, three repetitions at 50% and two repetitions at 75% 1-RM 

prior to each set to failure. A passive rest of 3 min was provided between warm-up sets and 

additional 5 min before and immediately after each set to failure. Due to this methodological 

structure (i.e., the standardized warm-up; the standardized passive rest before and after 

each set to failure), the repetition maximum tests were separated by approximately 22 min 

each. Criteria for movement execution were kept identical to those communicated for the 

1-RM test. Participants were instructed to lower the barbell in a controlled fashion on each 

repetition, albeit not being prescribed a fixed movement cadence. Similar to the 1-RM test, 
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participants had to await the verbal command of the staff member before initiating the con-

centric phase of a repetition, in order to avoid any rebound from the safety pins. The con-

centric phase of each repetition had to be performed at maximum intended velocity. A rep-

etition maximum test was terminated once the participant was unable to complete another 

repetition across the full range of motion despite using maximal effort, suggesting that the 

point of momentary failure had been reached [5].  

 

Statistical Analysis 

Reproducibility of performance measures 

Statistics were calculated following a Bayesian approach using weakly informative priors. 

To assess test-retest reliability of the 1-RM and RTF at 90%, 80% and 70% 1-RM, respec-

tively, the following random-intercept mixed effects model was used:  

 

𝑃𝑖𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 + 𝑠𝑖 + ∆𝑡𝐷𝑗, 𝜎𝑒²)         [1] 

 

In this model, Pij describes the analyzed performance measure as a dependent variable, μ 

describes the mean performance for T1, si the random deviation from μ for subject i, Δt the 

fixed effect of time (i.e., the systematic difference in performance between T2 and T1), Dj a 

binary dummy variable for trial j, and σe
2 the variance of model residuals. The random effect 

parameter si was considered to be sampled from a normal distribution with a mean of 0 and 

a variance of σs
2, as suggested by Baumgartner and colleagues [29]. Posterior distributions 

for each model parameter were sampled using the Hamiltonian Monte Carlo algorithm of 

the probabilistic programming language Stan [30] controlled through an R interface (rstan 

R package, version 2.21.2). Based on the resulting random-intercept models, relative con-

sistency (reliability) of each performance measure was evaluated using the Intraclass Cor-

relation Coefficient (ICC), which was estimated and interpreted as the proportion of total 

variance (σs
2 + σe

2) attributed to the variance among subjects (σs
2) [29]. Furthermore, ab-

solute consistency (agreement) of performance was quantified using the Standard Error of 

Measurement (SEM = σe), Within-Subject Coefficient of Variation (WSCV = SEM / μ) and 

Standard Error of Prediction (SEP = SD(1-ICC2)(1/2)) [29, 31, 32]. Posterior distributions of 

the statistics were summarized and interpreted according to the Maximum a Posteriori point 

estimate (MAP) and 90% Highest Density Interval (HDI) [33]. Effect directions supported by 

at least 90% of posterior probability were considered “clear” or “likely”.  
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Reproducibility of strength-endurance models 

To describe the relationship between relative load and RTF with respect to individual trends, 

four previously proposed model types were expressed according to a multilevel (mixed ef-

fects) structure: 

 

Lin: 𝑙𝑜𝑎𝑑𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝒂𝒊 + 𝒃𝒊𝑅𝑇𝐹𝑖, 𝜎²)       [2] 

Ex2: 𝑙𝑜𝑎𝑑𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝒂𝒊𝑒
(𝒃𝒊𝑅𝑇𝐹𝑖), 𝜎²)        [3] 

Ex3: 𝑙𝑜𝑎𝑑𝑖 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝒄𝒊 + 𝒂𝒊𝑒
(𝒃𝒊𝑅𝑇𝐹𝑖), 𝜎²)       [4] 

Crit: 𝑙𝑜𝑎𝑑𝑖  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑳
′
𝒊 / (𝑅𝑇𝐹𝑖 − 𝒌𝒊) + 𝑪𝑳𝒊, 𝜎²)      [5] 

 

Equation 2 (Lin) models the relationship as a linear regression. Equations 3 (Ex2) and 4 

(Ex3) both describe exponential regression models, where Ex3 follows the structure of a 

commonly proposed 3-parameters model [11, 12, 14] and Ex2 constitutes a simplified 2-

parameters version without the additive parameter ci [13]. Equation 5 (Crit) presents the 

previously described critical load model adapted for relative load as dependent variable, 

using the original parameter labels L’, k and CL [25, 27]. To evaluate how much parameter 

estimates for Equations 2 to 5 differ between T1 and T2, a change effect was added for 

each of the abovementioned subject-level parameters. For example, the parameter expres-

sion ai was extended to (ai + Δai Dj), where ai reflects the target parameter at T1, Δai reflects 

the change effect (difference) of the target parameter between T2 and T1 and Dj reflects a 

binary dummy variable for trial j. Importantly, all of the abovementioned parameters were 

modeled as random effects that were free to vary across subjects. The multilevel structure 

was realized by sampling subject-level parameters and change effects from multivariate 

normal distributions, applying covariance matrices to account for possible correlations 

among subject-level parameters and change effects, respectively. Further details on mod-

els and prior selection are provided online (Supporting information 1).  

A posterior predictive distribution was calculated by drawing random samples from the re-

spective group-level (fixed effects) distribution of each change effect and the draws were 

standardized to the scale of the associated model parameter at T1. The resulting posterior 

predictive distributions were summarized and compared to a threshold for acceptable dif-

ferences that was set at ±0.6, reflecting a small or trivial standardized change of the param-

eter [34]. Change effects were also expressed as a percentage of the group-level mean of 

the associated model parameter at T1 to facilitate the interpretation of parameters that are 

exceptionally homogeneous across subjects.  
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RESULTS 

 

 

Fig 2. Variability of strength performance in the bench press. A, one-repetition maxi-

mum (1-RM); B, repetitions performed to momentary failure (RTF) at 90% 1-RM; C, 

RTF at 80% 1-RM; D, RTF at 70% 1-RM; grey circles, data points (jittered illustration); 

black circles, group means; solid grey lines, individual performance changes; dashed 

black lines, systematic performance changes (Δt).  

 

The variability of 1-RM performance as well as the RTF performed at 90%, 80% and 70% 

1-RM is shown in Figure 2. On average, there was an increase in performance between T1 

and T2 (Δt), the 90% HDI suggesting a small systematic increase of the 1-RM, the RTF at 

80% 1-RM and the RTF at 70% 1-RM. Regarding relative consistency of performance, the 

1-RM yielded nearly perfect reliability, with the ICC being close to 1. The RTF, on the other 

hand, showed a trend for higher relative consistency at lower loads, although the difference 
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between load conditions was not statistically clear at the 90% credibility level. Analysis of 

absolute consistency revealed the SEM for the 1-RM to be likely less than 2.2 kg (90th per-

centile). Concerning the RTF performed at submaximal loads, the SEM was likely less than 

1 repetition at 90% and 80% 1-RM, and likely less than 1.5 repetitions at 70% 1-RM. Subject 

performance and consistency statistics are summarized in Table 1.  

Posterior predictive distributions of subject-level model parameters at T1 and T2 are sum-

marized in Table 2. Moreover, posterior predictive distributions for standardized change 

effects are shown in Figure 3. The critical load model revealed a systematic positive change 

effect for L’ [p (ΔL’i > 0 | data) > 99.9%] and systematic negative change effects for k [p 

(Δki < 0 | data) > 99.9%] and CL [p (ΔCLi < 0 | data) = 97.3%]. Similarly, the 3-parameters 

exponential model showed a systematic positive change effect for c [p (Δci > 0 | data) = 

99.7%] and systematic negative change effects for a [p (Δai < 0 | data) = 99.6%] and b [p 

(Δbi < 0 | data) = 96.4%]. None of the remaining models’ parameters resulted in a clear 

positive or negative change at the 90% credibility level. No model parameter resulted in a 

clearly small or trivial change at the chosen credibility level and threshold for acceptable 

differences. However, the slope parameter of the linear model (b) and the curvature param-

eter of the 2-parameters exponential model (b) indicated a probability of >80% for the 

change effect to be small or trivial. Furthermore, both intercept parameters (a) of the linear 

model and the 2-parameters exponential model indicated relative change effects close to 0 

(Table 3).  
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Fig 3. Posterior predictive distributions for standardized subject-level change effects 

(smoothed illustration). Dashed black lines, threshold for acceptable differences set to  

[-0.6, 0.6] indicating small or trivial changes; *, change effects Δa and Δc of the expo-

nential 3-parameters model are not visibly displayed due to very large scales.  

 

DISCUSSION 

The present study was designed to address two objectives: first, we evaluated the reliability 

and agreement of RTF performed at 90, 80 and 70% 1-RM in the bench press exercise. 

Second, we aimed to analyze the reproducibility of four different models representing the 

individual strength-endurance relationship to identify which ones provide the most robust 

parameter estimates. Test-retest analysis of performance indicated very good reproducibil-

ity of the 1-RM and the RTF at high relative loads in the bench press exercise. The linear 

regression and the 2-parameters exponential regression yielded the most robust parameter 

estimates across the investigated models of the strength-endurance relationship.  
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The 1-RM revealed both very high relative and absolute consistency. In particular, the SEM 

for the 1-RM was found to be likely less than the smallest load increment applied during the 

1-RM assessment in the present study (2.5 kg). These findings correspond to previous re-

search reporting excellent reliability of 1-RM performance in the bench press exercise [4, 

35, 36]. Similarly, the RTF at 90, 80 and 70% 1-RM revealed high absolute consistency, the 

SEM likely being less than 1.5 repetitions at 70% 1-RM, and less than 1 repetition at 90% 

and 80% 1-RM. Posterior distribution analysis revealed no systematic differences of SEM 

between RTF performed at 70%, 80% and 90% 1-RM. However, a slight shift of SEM pos-

terior distributions to lower values could be observed for RTF at higher relative loads. In 

particular, the difference of SEM between RTF at 70% and 90% 1-RM could have exceeded 

the predefined threshold for systematic differences at a larger sample size. Interestingly, 

the ICC showed an opposing non-systematic shift of posterior distributions, with lower rel-

ative loads resulting in slightly larger ICC values. These seemingly contradictory trends 

arising from absolute and relative consistency might be related to the computation of the 

respective statistics: in the present study, the ICC was calculated as the proportion of total 

variance attributed to the variance among subjects. Therefore, it tends to be smaller when 

between-subject variance is low and SEM is large. Indeed, our data suggest a higher be-

tween-subject variance of the RTF at 70% 1-RM compared to 90% 1-RM. A similar trend 

for heteroscedasticity in the relationship between relative load and RTF across individuals 

(i.e. a mean-variance “tradeoff”) has been reported on numerous occasions [3, 11, 12, 14, 

18, 19, 37, 38]. This phenomenon could be the result of normalizing the load to the 1-RM, 

which homogenizes the upper end of the load spectrum. However, it could also be partially 

explained by inter-individual differences in the strength-endurance relationship.  

Conforming trends for the reliability of the RTF performed at given relative loads can be 

observed from other sources. For example, Anders and colleagues reported an ICC of 0.90 

(95% CI: [0.58, 0.97]) for RTF completed at 70% 1-RM in the bench press [4], indicating a 

similar magnitude compared to the present study (ICC [90% HDI] = 0.86 [0.71, 0.93]). While 

the reported SEM of 0.68 repetitions was noticeably lower compared to the present study, 

the authors also described a lower between-subject standard deviation of ±1.5 repetitions. 

Similarly, Pereira and colleagues reported an ICC of 0.90 for the RTF achieved at 75% 1-

RM in the bench press, when performing repetitions at a joint velocity of 100°/s. While no 

information on subject heterogeneity was provided, the authors also reported an ICC of 0.70 

when the exercise was completed at a joint velocity of 25°/s. It could be hypothesized that 

the reduced movement cadence might have negatively affected the number of repetitions 

performed [14, 24], possibly due to an increased duration of the concentric phase of each 

repetition and associated increases in metabolic demand [39]. Hence, a reduced movement 
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cadence at lower loads could result in a distribution of RTF that is similar to the RTF at 

higher loads when repetitions are performed at maximal voluntary velocity, as was the case 

in the present study.  

Other studies investigated the reproducibility of RTF in absolute loads. For example, Mann 

et al. analyzed the test-retest reliability of NCAA Division I football players in the NFL-225 

test, which is a repetition maximum test using a fixed load of 225 lbs or 102.3 kg in the 

bench press exercise [40]. The authors reported an ICC of 0.98 to 0.99 and a typical error 

of 1.0 to 1.3 repetitions across three trials, the typical error corresponding to what has been 

calculated as SEM in the present study. While it is difficult to evaluate at what percentage 

of the 1-RM each participant performed the NFL-225 test in the absence of a 1-RM test, the 

authors estimated it to be around 67.9% 1-RM for athletes with a body mass below 100.5 

kg and around 44.6% 1-RM for heavier athletes. Therefore, the majority of participants per-

formed the NFL-225 test at lower relative loads compared to the present study. Given this 

fact, the reports of Mann et al. [40] correspond well to the results of the present study (SEM 

for RTF at 70% 1-RM [90% HDI] = 1.1 [0.8, 1.4] repetitions), especially when considering 

the large between-subject variance reported by the authors, which may have contributed to 

the large ICC, as discussed before. Finally, Rose and Ball analyzed the reliability of the RTF 

that could be achieved against 15.9 kg and 20.4 kg, reporting an ICC of 0.97 in both cases 

[36]. In their sample of 21 moderately trained women the two tested loads corresponded 

roughly to a mean relative load of 42% and 54% 1-RM, which supports the hypothesis of 

RTF tests showing higher relative consistency at low loads.  

A systematic increase in the 1-RM between test and retest has previously been described 

on numerous occasions for various exercises [41]. Interestingly, Ribeiro and colleagues 

reported that this time effect did not interact significantly with participants’ experience in 

resistance training [42]. While the magnitude of the systematic change (Δt [90% HDI] = 1.9 

kg [1.0, 2.7]) could be considered trivial in the present study, given the smallest load incre-

ment was 2.5 kg, previous research suggested that the effect may occur over the course of 

multiple consecutive retest trials as a result of practicing the test [42–44]. Similarly, the time 

effect of RTF performed at 90%, 80% and 70%-1RM showed a high probability for being 

less than 1 repetition. Despite the RTF at 80% and 70% 1-RM indicating a systematic dif-

ference between T1 and T2, the magnitude of this effect is likely trivial.   

To the best of our knowledge, this is the first study to evaluate and compare the reproduci-

bility of different strength-endurance models with respect to individual trends. Not all of the 

investigated models resulted in robust parameter estimates over time. Most notably, the 3-

parameters exponential model and the critical load model exhibited systematic changes for 
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all parameters. These findings suggest that naturally occurring variability in strength perfor-

mance likely causes parameter estimates to systematically change, even over short peri-

ods, and that the magnitude of these changes is unacceptably high in relation to the respec-

tive parameter’s group-level standard deviation. Therefore, the two models may not provide 

sufficient reproducibility for application in the practical field. In comparison, the linear model 

and the 2-parameters exponential model both resulted in a high probability for Δb (i.e., the 

change in slope and curvature parameters, respectively) to fall within the threshold for ac-

ceptable differences, although the effects were not clear at the selected credibility level. No 

clear change effect could be identified for the intercept parameter a in both cases due to 

low between-subject variability. However, findings suggest a negligible relative magnitude 

for Δa in both models (Table 3). Therefore, both the linear model and 2-parameters expo-

nential model yield the most robust parameter estimates across test-retest trials among the 

investigated models. To decide which of the two models to apply in a practical setting, prac-

titioners should also consider statistical qualities other than the robustness of models. For 

example, both the model fit und predictive validity can be considered essential characteris-

tics of a valuable strength-endurance profile. While previous research provided some evi-

dence that the relationship may be considered approximately linear at high loads [3, 10–

12], it has been suggested that the relationship actually follows a curvilinear trend when 

considering the full spectrum of loads [11, 13, 14]. Therefore, practitioners might want to 

resort to applying the 2-parameters exponential regression rather than the linear regression 

to model strength-endurance profiles, as research has not proposed any explicit disad-

vantages reasoning against its use.  

Based on the findings of the present study, a freely available web application was developed 

using the R package shiny (version 1.7.1). The application provides practitioners with a 

user-friendly interface to enter data from repetition maximum tests and offers different algo-

rithms to compute the individual and exercise-specific strength-endurance profile. Upon 

computation, it offers a graphical display of the profile, a model equation and an adjusted 

R² estimate to evaluate model fit. Furthermore, it produces an individual repetition-maxi-

mum table based on the estimated model parameters that predicts loads for a wider spec-

trum of RTF. A link to the web application is provided at the end of this article.  

It should be pointed out that the order of repetition maximum tests was not randomized in 

the present study. Hence, a possible systematic effect of the earlier sets performed to mo-

mentary failure on subsequent sets and, thus, the presence of systematic bias in the RTF 

performed cannot be excluded. Future research should strive to compare different test pro-

tocols and identify a valid, yet practically applicable approach to acquiring the necessary 
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data for model computation. However, the results of the present study may help practition-

ers understand the consistency of strength performance under standardized conditions and 

can assist with the selection of a reliable statistical model to calculate individual strength-

endurance profiles. 

 

CONCLUSIONS AND PRACTICAL APPLICATIONS 

In conclusion, both the 1-RM and RTF at 90%, 80% and 70% 1-RM showed good repro-

ducibility over test-retest trials in the bench press exercise for trained subjects. When mod-

eling the relationship between load and RTF using a multilevel structure, the linear regres-

sion and 2-parameters exponential regression provide more stable parameter estimates 

than the 3-parameters exponential regression or critical load model.  

To calculate a strength-endurance profile for a given individual and specific exercise, it is 

recommended to acquire the maximum number of repetitions that can be performed to mo-

mentary failure against three different loads. While the loads should be chosen according 

to a range of interest, practitioners should expect to experience higher absolute day-to-day 

variability of RTF at lower loads. For loads in the range of 70% - 100% 1-RM, a linear re-

gression or a 2-parameters exponential regression should be applied to reliably model the 

relationship between tested loads and the number of achieved repetitions. To derive a ro-

bust strength-endurance profile, practitioners can access a free-to-use web application us-

ing the following link: 

 https://strength-and-conditioning-toolbox.shinyapps.io/Strength-Endurance_Profile/  
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ABSTRACT 

The objectives of this study were A) to compare two different protocols for the assessment 

of strength-endurance at multiple loads and B) to identify an appropriate model function for 

the relationship between load and the number of repetitions performed to momentary failure 

(RTF). Fourteen resistance-trained men underwent a one-repetition maximum (1-RM) test 

in the bench press exercise. In the following four sessions, they were tested for the RTF at 

90%, 80%, and 70% 1-RM: once in the form of a single-visit protocol (SV, all loads being 

tested in the same session) and once in the form of a multi-visit protocol (MV, only one load 

being tested per session). While both protocols resulted in an equivalent number of repeti-

tions at 90% 1-RM (mean difference [95% Highest Density Interval]: 0.0 repetitions [-0.6, 

0.7]), the difference was statistically inconclusive at 80% 1-RM (0.4 repetitions [-0.3, 1.2]). 

Importantly, the MV protocol allowed for a larger number of repetitions to be performed at 

70% 1-RM (1.9 repetitions [0.9, 2.7]). Analysis of model functions, when conducted with the 

data collected from the MV protocol, revealed that the relationship between load and RTF 

tends to be represented best by the reciprocal model and the 2-parameters exponential 

model. 

 

KEY WORDS 

Resistance training, local muscular endurance, repetitions to failure, modeling, single-visit, 

multi-visit 

 

KEY POINTS 

• When completing multiple RTF tests in a single session using a declining order of 

loads and separating tests by 22 min (SV protocol), the number of repetitions 

achieved is likely progressively biased in subsequent tests. 

• For the touch-and-go bench press exercise, the relationship between load and RTF 

follows a curvilinear trend at loads ranging from 70% to 100% 1-RM.   

• When distributing RTF tests across multiple sessions (MV protocol), strength-endur-

ance profiles of the touch-and-go bench press exercise should be modeled using 

either the 2-parameters exponential regression or reciprocal regression.  

 

INTRODUCTION 

Prescribing training loads as a percentage of the individual one-repetition maximum (1-RM) 

is a well-established practice in resistance training programming and frequently applied in 
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experimental research to standardize training loads across participants (Hickmott et al., 

2022; Suchomel et al., 2021). Once the desired training load is fixed, the number of repeti-

tions performed in a given set affects the degree of effort, as determined by the proximity 

to momentary failure at the set endpoint (Steele et al., 2017). Various methods have been 

proposed to evaluate and approximately control the degree of effort at a submaximal level, 

including autoregulative methods that apply either subjective perception of effort (e.g., rep-

etitions in reserve) or loss of maximum voluntary movement velocity as indicators of prox-

imity to failure (Pelland et al., 2022). Alternatively, practitioners can apply published charts 

that associate a range of repetition numbers with the respective maximum load relative to 

the individual 1-RM (Chapman et al., 1998; Mayhew et al., 1993). Typically, the relative 

loads listed in these “repetition maximum tables” are point predictions based on statistical 

models that describe relative load as a function of the number of repetitions performed to 

momentary failure (RTF). Importantly, all the above-mentioned methods of controlling prox-

imity to failure underlie considerable limitations. For example, autoregulative methods using 

perception of effort have been shown to yield lower accuracy for predicted proximity to fail-

ure when sets are terminated far from failure, especially at lighter loads (Halperin et al., 

2021). Velocity-based methods, on the other hand, require access to respective monitoring 

technology and succumb to within-subject variability in movement velocity (Grgic et al., 

2020) as well as potential random measurement error introduced by the applied technology 

(Courel-Ibáñez et al., 2019). Furthermore, published repetition maximum tables generalize 

the strength-endurance relationship across individuals, in spite of numerous studies provid-

ing evidence that the maximum number of repetitions performed at a given relative load 

increasingly varies between individuals (Desgorces et al., 2010; Mitter et al., 2022b; Rich-

ens and Cleather, 2014) and exercises (Hoeger et al., 1990; Shimano et al., 2006), as rel-

ative load decreases. 

A potential solution to these limitations has been considered by modeling the relationship 

between load and RTF on an individual level based on multiple sets performed to momen-

tary failure (i.e., trials) at different loads, which allows for repetition maximum tables to be 

individualized (Dinyer et al., 2019; Morton et al., 2014). Recently, a study performed by our 

group has provided evidence that the between-subject variance in RTF completed can be 

explained by inter-individual differences in the strength-endurance relationship, supporting 

the concept of individual strength-endurance profiles (Mitter et al., 2022b). In this study, four 

different model functions were tested to represent the strength-endurance relationship in 

the pin press exercise, including linear regression, two different exponential regression 

models and the 3-parameters critical load model. Among these models, the 2-parameters 

exponential regression was identified as the most valuable representation of the strength-
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endurance relationship, as it provides a good fit and predictive validity while yielding robust 

parameter estimates across test-retest trials (Mitter et al., 2022a; Mitter et al., 2022b). Im-

portantly, in the above-mentioned studies, data were acquired in the form of a single-visit 

protocol, meaning that each participant completed trials at three different loads within a 

single session, and with extended rest intervals between trials. Furthermore, trials with dif-

ferent loads were completed in a standardized order of declining loads to minimize the ex-

pected effect of accumulated fatigue. While this approach may be a time-efficient solution 

to acquire data, it differs considerably from earlier studies that randomly distributed trials 

across multiple days (i.e., multi-visit protocols), having participants complete only a single 

trial per session with at least 24 h between sessions (Dinyer et al., 2019; Morton et al., 

2014). Differences in achieved performance during single-visit protocols compared to multi-

visit protocols have repeatedly been investigated for disciplines such as cycling and running 

(Galbraith et al., 2014; Karsten et al., 2017; Triska et al., 2021). However, the transferability 

of those findings to resistance training is questionable, as it can be assumed that different 

factors contribute to the development of fatigue in resistance exercise compared to endur-

ance exercise. Consequently, participants undergoing a single-visit protocol for the assess-

ment of strength-endurance data may not perform each trial under rested conditions, de-

spite the application of strategies to minimize the expected effect of fatigue between trials 

(Mitter et al., 2022b). In particular, it can be hypothesized that when applying a fixed order 

of trials with declining loads, the performance during consecutive sets to momentary failure 

at lighter loads may be biased negatively and allow for fewer repetitions to be completed 

than would be possible in a fully rested state (Salles et al., 2009). 

Two objectives were defined for the design of the present experiment. First, we aimed to 

evaluate differences between a fixed-order single-visit (SV) protocol and a random-order 

multi-visit (MV) protocol for the acquisition of strength-endurance data. Second, we chal-

lenged the robustness of the findings from the previously described study (Mitter et al., 

2022b), by replicating its analysis of different model types with the data collected during the 

MV protocol. Apart from the four originally investigated model functions, we also included a 

reciprocal regression model as a nonlinear alternative to the 2-parameters exponential 

model with an identical number of parameters, to evaluate whether curvilinear functions of 

an equivalent level of complexity differ in their fit and predictive performance. Both research 

questions were investigated for the touch-and-go barbell bench press to apply an econom-

ically valid, yet similar exercise compared to the referenced study. 
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METHODS 

Experimental procedure 

Participants visited the laboratory on five days with inter-session breaks of 48 to 72 h. They 

were instructed to refrain from vigorous exercise 24 h before each visit and not to consume 

caffeine or other potentially confounding stimulants 6 h prior to each visit. On their first visit, 

they underwent basic anthropometric assessment of their body mass using a digital scale 

(Seca Model 877; SECA GmbH & Co. KG., Hamburg, Germany). Subsequently, they were 

familiarized with the experimental setup and completed a 1-RM test in the touch-and-go 

bench press. During the remaining four visits, participants were tested twice for the RTF at 

90%, 80% and 70% 1-RM: once in the form of an SV protocol (i.e., all three trials being 

completed within a single session) and once in the form of a MV protocol (i.e., trials being 

distributed across three sessions). The experiment was conducted according to a random-

ized and counterbalanced cross-over design. First, the order of protocol (SV and MV) was 

randomized and counterbalanced to have an equal number of participants starting with ei-

ther protocol. Second, the order of trials was randomized and counterbalanced within the 

MV protocol, to have an approximately even number of participants completing each order 

of trials. For the SV protocol, trials were completed in a fixed declining order (trial 1: 90% 1-

RM, trial 2: 80% 1-RM, trial 3: 70% 1-RM) to conform with the protocol used in our previous 

studies (Mitter et al., 2022a; Mitter et al., 2022b). The experimental structure is portrayed in 

Figure 1. 
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Figure 1. Experimental structure. 

1-RM, one-repetition maximum; SV, single-visit; MV, multi-visit; RTF, repetitions per-

formed to momentary failure.  

 

Participants 

Fourteen resistance-trained men voluntarily completed the experiment (age: 25.0 ± 2.8 y, 

body mass: 83.9 ± 8.6 kg, experience in the barbell bench press: 5.9 ± 3.1 y, bench press 

1-RM‧body mass-1: 1.43 ± 0.22 kg‧kg-1). In order to be included in the analysis, applicants 

were required to fulfill the following criteria: 1) being male and between 18 and 40 years old, 

2) being free of acute or chronic illness and musculoskeletal injury, 3) having at least one 

year of practical training experience in the barbell bench press with regular (at least once a 

week) application in training, and 4) being able to complete at least one repetition with a 

load equivalent to their body mass. The satisfaction of criteria 1) through 3) was evaluated 

by having all applicants complete a modified physical activity readiness questionnaire (PAR-

Q) during their first visit to the laboratory, while criterion 4) was evaluated according to the 

result of the initial 1-RM test. Each participant signed an informed consent form before un-

dergoing physical assessment. The experiment was conducted in compliance with the Dec-

laration of Helsinki and approved by the host institution’s local ethics committee (reference 

number 00727). 
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Exercise technique and materials 

The touch-and-go bench press was executed in a Competition Combo Rack with a standard 

powerlifting barbell and calibrated weight plates (Eleiko, Halmstad, Sweden). Participants 

were instructed to lower the barbell in a controlled manner, until it touched their chest, and 

complete the subsequent concentric movement phase at maximum intended velocity until 

reaching full extension of their elbow joints on every repetition. They further had to keep 

their pelvis in contact with the bench and their feet on the floor. An experienced staff mem-

ber supervised each participant’s adherence to the instructions, provided verbal encourage-

ment during sets, and spotted the participant appropriately to ensure safety. A linear posi-

tion transducer (GymAware Power Tool, Kinetic Performance Technologies, Canberra, 

Australia) was used to record barbell displacement and velocity during all performed repe-

titions. 

 

One-repetition maximum test 

Prior to the 1-RM test, participants were asked to provide a subjective estimate of their 

current 1-RM in the touch-and-go bench press. They followed a standardized warm-up in-

cluding 5 min of stationary cycling at a fixed power output of 1 W per kg body mass and a 

cadence of 80 rpm (Kettler X1, Tri-sport, Huenenberg, Switzerland). Subsequently, partici-

pants completed an initial warm-up set of 10 repetitions at 25% of their estimated 1-RM 

using a controlled movement cadence. After a 2-min rest, they followed an incremental 

loading protocol including one set each at 25%, 50%, 75%, 85% and 95% of the estimated 

1-RM, using between 1 and 3 repetitions per load and 3 to 5 min of rest in between. The 

exact number of repetitions and rest duration was autoregulated based on the achieved 

mean concentric barbell velocity in each set. Following this loading scheme, load incre-

ments were selected individually to identify the 1-RM to the closest 2.5 kg increment. A 

detailed description of the loading protocol and information on its test-retest reliability can 

be found elsewhere (Mitter et al., 2022a). Participants required (mean ± SD) 2.9 ± 0.9 at-

tempts to reach the 1-RM, achieved 119.6 ± 20.6 kg as a result of the 1-RM test and com-

pleted the 1-RM at a mean concentric barbell velocity of 0.13 ± 0.04 m‧s-1.  

 

Single-visit and multi-visit protocol 

The SV protocol was implemented according to a recently described experimental structure 

(Mitter et al., 2022b). Participants completed three trials within a single session to identify 

the RTF at 90%, 80% and 70% of the previously determined 1-RM in a fixed declining order 
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of loads. Each trial was initiated by the same general warm-up described for the 1-RM test 

(i.e., 5 min of stationary cycling). Following this, participants performed one warm-up set of 

3x25%, 3x50% and 2x75% 1-RM, respectively, with 3 min of rest in between. 5 min after 

the last warm-up set, they completed the respective RTF test, followed by another 5 min 

rest interval, before continuing with the warm-up of the subsequent trial featuring the next 

lower load. This resulted in a duration of approximately 22 min for each trial, including pas-

sive rest. For the RTF test, participants were instructed to complete as many repetitions as 

possible until reaching momentary failure, while minimizing the time in between repetitions 

and ensuring that the full range of motion was being used during all repetitions. 

In the MV protocol, the three trials described for the SV protocol were distributed across 

three consecutive sessions with rest periods of 48 to 72 h separating sessions, the order of 

trials being randomized and counterbalanced across participants. Apart from this, the ex-

perimental structure of the applied trials was identical between protocols. 

 

 

Figure 2. Assumed scientific model (directed acyclic graph). 

P, protocol (single-visit, multi-visit); RTF, repetitions performed to momentary failure; T, 

trial (90%, 80% and 70% of the one-repetition maximum).  
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Statistical analysis 

Both research questions were investigated using an estimation-based Bayesian approach 

for data analysis, applying the R package rstan (version 2.26.13) in combination with cus-

tomized Stan scripts (Stan version 2.26.x) to sample from posterior distributions.  

To evaluate differences between the SV and MV protocol, a scientific model was con-

structed based on the main variables of interest and potential covariates. The assumed 

causal structure is portrayed in Figure 2 as a directed acyclic graph. Based on this structure, 

a multilevel (i.e., mixed-effects) model with correlated random intercepts and random slopes 

was defined, applying RTF as a continuous dependent variable, protocol (P) as a binary 

independent variable and trial (T) as a discrete covariate with three levels, using dummy 

variables (D1 and D2) to express differences between trials. Furthermore, a P x T moderator 

effect was considered, as potential systematic fatigue during the SV protocol would most 

reasonably occur only during the 80% and 70% trials, due to the fixed order of trials. The 

statistical model is expressed in equation 1, random effects being portrayed as bold letters 

with a subscript “s”: 

 

RTF ~ Normal(𝐚𝐬 + 𝛃𝐬 D1 + 𝛄𝐬 D2 + P (∆𝐚𝐬 + ∆𝛃𝐬 D1 + ∆𝛄𝐬 D2), σ
2) (1) 

 

In equation 1, as describes the performance for the SV protocol in trial A (90% 1-RM), while 

βs and γs describe the number of additional repetitions achieved in trial B (80% 1-RM) and 

trial C (70% 1-RM) within the SV protocol, respectively. The difference in RTF between the 

SV and MV protocol for trial A is expressed by Δas. Finally, Δβs and Δγs describe the mod-

erator effects of trials B and C on the difference between protocols, and σ² yields the vari-

ance of model residuals. Zero-centered Cauchy priors were applied for all group-level pa-

rameters, group-level standard deviations being limited to positive real numbers. To mini-

mize information introduced by priors, a prior sensitivity analysis was conducted on a set of 

5 different prior scales, identifying 𝐶𝑎𝑢𝑐ℎ𝑦(0, 5) as an appropriate and weakly informative 

prior choice. Posteriors of group-level parameters were combined to express the difference 

between SV and MV protocols for each trial in a single posterior, respectively. Subse-

quently, posteriors were compared against a region of practical equivalence (ROPE) de-

fined at ± 1 repetition, which can be considered the smallest resolution at which differences 

in RTF can be identified, when only considering repetitions completed across the full range 

of motion. Effect directions (i.e., negative, trivial or positive) that were supported by at least 

95% of posterior probability were deemed “likely”. Posterior predictive distributions (PPDs) 

were calculated for the effect of protocol in each trial to estimate a between-subject standard 
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deviation of expected differences between protocols, accounting for both uncertainty in pa-

rameter estimates and sampling uncertainty. Standard deviations were calculated by mo-

ment-matching PPDs to normal distributions using the R package fitdistrplus  

(version 1.1-8).  

To compare different model types of the strength-endurance relationship, the analysis de-

scribed by Mitter et al. (2022b) was replicated using the data acquired during the MV pro-

tocol, applying a few analytical adaptations. Data on absolute load and RTF was fitted to 

linear regression (Lin), 2-parameters exponential regression (Ex2), 3-parameters exponen-

tial regression (Ex3) and the critical load model (Crt). Additionally, a reciprocal regression 

model (Rec) was included in the analysis according to the following function: 

 

load ~ Normal(1/(𝐚𝐬 + RTF 𝐛𝐬), σ
2) (2) 

 

While the reciprocal regression model is not explicitly addressed in empirical research on 

the strength-endurance relationship, it is a simple nonlinear adaptation of the linear regres-

sion model that applies the same number of parameters as Lin and Ex2 and therefore con-

stitutes a valuable alternative for investigation.  

Models were fitted to standardized data as multilevel models with subject-level parameters 

being sampled from multivariate normal distributions to account for potential correlations 

between parameters. As for the main analysis, weakly informative priors were identified 

based on a prior sensitivity analysis. Models were then compared based on variance ex-

plained (R²) and leave-one-out cross-validation information criterion (LOOIC) using the R 

package loo (version 2.5.1). Differences in R² posterior distributions were deemed “likely” if 

they overlapped less than 5% (∩R² < 5%). Differences in LOOIC (ΔLOOIC) were deemed 

“likely” if they exceeded 4x the standard error of difference (SEΔ).  

Posteriors were summarized using the posterior mean and 95% Highest Density Interval 

(HDI). All digital materials, including R and Stan scripts, were uploaded to a publicly acces-

sible repository to provide further details on the statistical modeling, Bayesian sampling and 

the prior sensitivity analysis (https://doi.org/10.5281/zenodo.7190009).  

  

https://doi.org/10.5281/zenodo.7190009
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RESULTS 

Single-visit vs. multi-visit protocols 

Group-level means for RTF completed in the SV protocol were estimated at (mean [95% 

HDI]) 4.8 repetitions [4.1, 5.5] for trial A (90% 1-RM), 9.4 repetitions [8.5, 10.3] for trial B 

(80% 1-RM) and 14.3 repetitions [12.9, 15.7] for trial C (70% 1-RM). Posterior distributions 

of mean differences in RTF completed in the MV and SV protocol for trials A, B, and C (i.e., 

μΔa, μΔb and μΔc, respectively) are shown in Figure 3. Analysis revealed likely trivial differ-

ences between MV and SV of 0 repetitions [-0.7, 0.7] in trial A [p(μΔa ∈ ROPE | data) = 

99.3%]. Differences between MV and SV were statistically inconclusive in trial B (0.4 repe-

titions [-0.4, 1.3]) at the predetermined probabilistic threshold, although posterior analysis 

revealed a high probability for a trivial effect magnitude [p(μΔb ∈ ROPE | data) = 91.8%]. 

RTF in trial C were found to be likely higher in the MV protocol compared to the SV protocol 

[p(μΔc > ROPE | data) = 97.0%], with an estimated mean of 1.9 repetitions [0.9, 2.7]. PPDs 

yielded between-subject standard deviations of expected differences in trials A, B and C of 

0.7, 1.0 and 1.2 repetitions, respectively.  

 

Comparison of strength-endurance models 

Statistics for the comparison of different model types are summarized in Table 1. All models 

fitted the data well and differences between R2 estimates were statistically inconclusive at 

the predetermined threshold among all comparisons (∩R² = 12.0% - 91.4%). ΔLOOIC esti-

mates indicated that the predictive accuracy was likely worse for Lin compared to Rec and 

Ex3. Ex2 and Crt also resulted in lower LOOIC estimates (i.e., better predictive perfor-

mance) when compared to Lin, however, differences did not exceed the predefined thresh-

old (Lin vs. Ex2 and Lin vs. Crt, respectively: ΔLOOIC = 3.7x SEΔ). No clear differences in 

LOOIC were identified among nonlinear models. 
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Figure 3. Differences between protocols. 

The left column displays observed individual differences (jittered illustration). 

The right column displays posterior distributions of mean differences in RTF (μΔ) 

achieved in the two protocols (positive numbers indicate more repetitions being 

performed in the MV protocol). Dashed lines mark a region of practical equiva-

lence defined at [-1, 1] repetitions. The grey area under the curve marks the 

95% Highest Density Interval. A, 90% one-repetition maximum; B, 80% one-

repetition maximum; C, 70% one-repetition maximum; RTF, repetitions per-

formed to momentary failure; SV, single-visit protocol; MV, multi-visit protocol.  
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Table 1. Comparison of model fit and predictive performance of five 

model functions representing the strength-endurance relationship. 

Rank Model R2 [95% HDI] ∩R2
 (%) ΔLOOIC (SEΔ) 

1 Rec 0.99 [0.98, 0.99]   

2 Ex3 0.99 [0.98, 0.99] 82.9 6.7 (11.2) 

3 Crt 0.99 [0.98, 0.99] 91.4 12.5 (13.4) 

4 Ex2 0.98 [0.97, 0.99] 59.7 22.6 (12.5) 

5 Lin 0.97 [0.96, 0.98] 20.3 44.0 (10.9) * 

Models are ranked based on LOOIC (smaller values indicating bet-

ter models).  

R2, coefficient of determination (posterior mean); HDI, Highest 

Density Interval; ∩R2, overlap of R2 posterior distributions with the 

highest ranked model (Rec); ΔLOOIC, difference in leave-one-out 

cross-validation information criterion compared to highest ranked 

model (Rec); SE, standard error of LOOIC differences (* indicating 

statistically clear differences) ; Rec, reciprocal model; Ex3, 3-pa-

rameters exponential model; Crt, critical load model; Ex2, 2-param-

eters exponential model; Lin, linear regression model.  

 

DISCUSSION 

The present study compared two previously described approaches of assessing data for 

individual strength-endurance profiles: a SV protocol, where multiple sets are performed to 

failure in a single session with different loads being tested in a fixed order of trials, and a 

MV protocol, where sets with different loads are distributed across multiple sessions with a 

randomized order of trials. Moreover, five different model functions were fitted to strength-

endurance data acquired during the MV protocol and compared in terms of model fit and 

predictive performance, to evaluate whether recently published findings based on SV pro-

tocols hold true under MV conditions. 

To the knowledge of the authors, this is the first study to compare a single-visit to a multi-

visit approach for the assessment of strength-endurance at multiple loads. Results indicate 

that the two protocols likely yield an equivalent number of RTF at 90% 1-RM, which may be 

attributed to the SV protocol being completed in a fixed declining order of loads. Hence, the 

trial at 90% 1-RM was completed under approximately identical within-session conditions 
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in both protocols. Similarly, the difference between protocols for the trial performed at 80% 

1-RM suggested a high probability for practical equivalence, although the effect was not 

deemed clear at the predefined probabilistic threshold. Finally, analysis revealed that the 

MV protocol likely allows for a larger number of RTF to be performed for the 70% 1-RM trial, 

compared to the SV approach. Therefore, it could be hypothesized that while the SV proto-

col provided participants an extended rest period in between sets performed to failure, this 

rest period may not have sufficiently compensated fatigue that accumulated during the first 

two trials of the SV protocol. In general, these findings agree with previous studies showing 

a loss in repetition performance over repeated sets performed to failure or close to failure 

(García-López et al., 2008; Iglesias-Soler et al., 2012; Miranda et al., 2009; Ratamess et 

al., 2012; Salles et al., 2009; Santos et al., 2021; Senna et al., 2009). However, since these 

effects were shown to be moderated by rest duration in between sets, with longer rest pe-

riods allowing for a better retention of repetition performance, it is surprising that repetition 

performance was not recovered during the 22 min in between RTF tests. Richmond and 

Godard (2004) reported that under rested conditions, participants were able to complete 

11.5 ± 2.3 repetitions in the bench press performed at 75% 1-RM, whereas they could only 

complete an average 9.8 ± 2.0 repetitions in a second set performed after 5 min of rest [i.e., 

statistics were synthesized from a figure using WebPlotDigitizer (Rohatgi, 2020)]. The av-

erage loss in performance of 1.7 repetitions corresponds well to the loss in performance 

identified in the last trial of the SV protocol during the present study (mean [95% HDI] = 1.9 

repetitions [0.9, 2.7]), although Richmond and Godard (2004) provided only about a quarter 

of the inter-set rest time used in the present investigation. While it cannot be ruled out that 

the loss in performance observed in the SV protocol may be partially explained by applied 

measures to maintain warm-up effects, it can be speculated that the effect may be attributed 

to a component of fatigue that persists beyond 22 min of rest. Various physiological path-

ways may contribute to the explanation of the observed effects, including the incomplete 

degradation of metabolites, such as ammonia (Morán-Navarro et al., 2017) and inorganic 

phosphate (Feriche et al., 2020), as well as central fatigue processes. However, a compre-

hensive discussion of potential mechanisms is beyond the scope of the present article. In-

terested readers are referred to other sources for information (Kataoka et al., 2022; Zając 

et al., 2015). 
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Figure 4. Examples for strength-endurance profiles. 

Data were taken from the individual showing the best model fit (A, left panel) and 

the one showing the worst model fit (B, right panel). Black crosses display subject 

data. Solid lines display the exponential 2-parameters model fits. Dashed lines 

display the reciprocal regression model fits.  

RTF, repetitions performed to momentary failure.  

 

Since the present study provides evidence that the SV protocol succumbs systematic neg-

ative bias in the third trial completed at 70% 1-RM, it is questionable whether the strength-

endurance relationship is indeed best represented by the 2-parameters exponential regres-

sion model, as recently reported (Mitter et al., 2022b). Interestingly, the analysis of the pro-

posed model functions revealed similar results compared to the referenced study: Lin 

showed the worst model fit as indicated by R2 estimates among investigated models, how-

ever, differences were not statistically conclusive at the predefined threshold. Similarly, Lin 

yielded the worst predictive performance as indicated by LOOIC, with estimates being likely 

different to Rec and Ex3 and closely approaching the threshold of likely differences for Ex2 

and Crt. These findings conform to what would be expected from a logical perspective: if 

the SV protocol biases the lower-load end of the strength-endurance relationship negatively, 

but is nevertheless well represented by curvilinear functions, the trend will most likely not 

be linear under a MV protocol, where the relationship is shifted towards higher repetition 

numbers at lower loads. Similar to our earlier findings (Mitter et al., 2022b), the analysis did 

not reveal a statistically conclusive difference of R2 and LOOIC estimates among curvilinear 

model types. Importantly, the reciprocal model (Rec) proposed in the present study was 

found to be a valuable alternative to other curvilinear models. While the model has not been 
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addressed in empirical research thus far, it can be rearranged from a few proposed equa-

tions used to predict the 1-RM from RTF at submaximal loads, such as the ones associated 

with Brown (1992), O'Connor et al. (1989) or Welday (1988) [for review, see Mayhew et al. 

(2008)]. The function further allows for a simple estimation of model parameters by first 

applying a reciprocal transformation to load (i.e., 1/load) and then fitting a common linear 

regression model to estimate parameters. In accordance with our recently communicated 

analytical approach (Mitter et al., 2022b), Ex2 and Rec provide the most appropriate repre-

sentations of the strength-endurance relationship (Figure 4), as they yield a similar fit and 

predictive accuracy compared to Ex3 and Crt, while relying on fewer parameters. Addition-

ally, recent research has shown that parameter estimates for Ex3 and Crt vary noticeably 

over the course of one week, flagging them as non-robust functions (Mitter et al., 2022a).  

 

CONCLUSION 

The results of the present study provide evidence that when assessing strength-endurance 

(RTF) in the bench press at 90%, 80% and 70% 1-RM by following a single-visit protocol 

with a declining order of loads, performance at 70% 1-RM is likely biased negatively. In 

particular, performance at 70% 1-RM can be expected to be reduced by (PPD mean ± SD) 

1.9 ± 1.2 repetitions when RTF tests are completed 22 min apart. Practitioners who want to 

assess multiple instances of strength-endurance, for example for the computation of indi-

vidual strength-endurance profiles, are therefore advised to embed RTF assessments 

across multiple consecutive training sessions, preferably at the beginning of each session, 

following a standardized warm-up. When computing strength-endurance profiles based on 

such data, practitioners should rely on simple curvilinear model functions, such as the re-

ciprocal regression model or the 2-parameters exponential regression model. 

 

ACKNOWLEDGEMENTS 

The authors would like to express their gratitude to the participants who contributed to the 

present study. Furthermore, we would like to thank Intelligent Strength Education GmbH for 

providing each participant with free goods as a reward for their participation.  

The authors have no professional relationships with companies or manufacturers men-

tioned in the present study and no financial support from third parties was received for its 

execution. There is no conflict of interest to declare. Experiments were conducted in com-

pliance with the current laws of the country in which they were performed. 

 



 

106 

DISCLOSURE STATEMENT 

There is no conflict of interest to declare. Experiments were conducted in compliance with 

the current laws of the country in which they were performed. 

 

REFERENCES 

Brown, H.L. (1992) Lifetime fitness. 3rd edition. Scottsdale, Ariz.: Gorsuch Scarisbrick. 

Chapman, P.P., Whitehead, J.R. and Binkert, R.H. (1998) The 225–1b Reps-to-Fatigue 

Test as a Submaximal Estimate of 1-RM Bench Press Performance in College Foot-

ball Players. Journal of Strength and Conditioning Research 12(4), 258–261. 

Courel-Ibáñez, J., Martínez-Cava, A., Morán-Navarro, R., Escribano-Peñas, P., Chavarren-

Cabrero, J., González-Badillo, J.J. and Pallarés, J.G. (2019) Reproducibility and Re-

peatability of Five Different Technologies for Bar Velocity Measurement in Re-

sistance Training. Annals of biomedical engineering 47(7), 1523–1538. 

Desgorces, F.D., Berthelot, G., Dietrich, G. and Testa, M.S.A. (2010) Local muscular en-

durance and prediction of 1 repetition maximum for bench in 4 athletic populations. 

Journal of Strength and Conditioning Research 24(2), 394–400. 

Dinyer, T.K., Byrd, M.T., Vesotsky, A.N., Succi, P.J. and Bergstrom, H.C. (2019) Applying 

the Critical Power Model to a Full-Body Resistance-Training Movement. Interna-

tional journal of sports physiology and performance 14(10), 1364–1370. 

Feriche, B., Schoenfeld, B.J., Bonitch-Gongora, J., La Fuente, B. de, Almeida, F., Argüelles, 

J., Benavente, C. and Padial, P. (2020) Altitude-induced effects on muscular meta-

bolic stress and hypertrophy-related factors after a resistance training session. Eu-

ropean journal of sport science 20(8), 1083–1092. 

Galbraith, A., Hopker, J., Lelliott, S., Diddams, L. and Passfield, L. (2014) A single-visit field 

test of critical speed. International journal of sports physiology and performance 

9(6), 931–935. 

García-López, D., Herrero, J.A., Abadía, O., García-Isla, F.J., Ualí, I. and Izquierdo, M. 

(2008) The role of resting duration in the kinematic pattern of two consecutive bench 

press sets to failure in elite sprint kayakers. International journal of sports medicine 

29(9), 764–769. 

Grgic, J., Scapec, B., Pedisic, Z. and Mikulic, P. (2020) Test-Retest Reliability of Velocity 

and Power in the Deadlift and Squat Exercises Assessed by the GymAware Power-

Tool System. Frontiers in physiology 11, 561682. 

Halperin, I., Malleron, T., Har-Nir, I., Androulakis-Korakakis, P., Wolf, M., Fisher, J. and 

Steele, J. (2021) Accuracy in Predicting Repetitions to Task Failure in Resistance 



 

107 

Exercise: A Scoping Review and Exploratory Meta-analysis. Sports medicine (Auck-

land, N.Z.). 

Hickmott, L.M., Chilibeck, P.D., Shaw, K.A. and Butcher, S.J. (2022) The Effect of Load and 

Volume Autoregulation on Muscular Strength and Hypertrophy: A Systematic Re-

view and Meta-Analysis. Sports medicine - open 8(1), 9. 

Hoeger, W.W., Hopkins, D.R., Barette, S.L. and Hale, D.F. (1990) Relationship between 

repetitions and selected percentages of one repetition maximum: A comparison be-

tween un-trained and trained males and females. Journal of Strength and Condition-

ing Research 4(2), 47–54. 

Iglesias-Soler, E., Carballeira, E., Sánchez-Otero, T., Mayo, X., Jiménez, A. and Chapman, 

M.L. (2012) Acute effects of distribution of rest between repetitions. International 

journal of sports medicine 33(5), 351–358. 

Karsten, B., Hopker, J., Jobson, S.A., Baker, J., Petrigna, L., Klose, A. and Beedie, C. 

(2017) Comparison of inter-trial recovery times for the determination of critical power 

and W' in cycling. Journal of sports sciences 35(14), 1420–1425. 

Kataoka, R., Vasenina, E., Hammert, W.B., Ibrahim, A.H., Dankel, S.J. and Buckner, S.L. 

(2022) Is there Evidence for the Suggestion that Fatigue Accumulates Following 

Resistance Exercise? Sports medicine (Auckland, N.Z.) 52(1), 25–36. 

Mayhew, J.L., Johnson, B.D., Lamonte, M.J., Lauber, D. and Kemmler, W. (2008) Accuracy 

of prediction equations for determining one repetition maximum bench press in 

women before and after resistance training. Journal of Strength and Conditioning 

Research 22(5), 1570–1577. 

Mayhew, J.L., Ware, J.R. and Prinster, J.L. (1993) Using Lift Repetitions to Predict Msucular 

Strength in Adolescent Males. National Strength and Conditioning Association Jour-

nal 15(6), 35–38. 

Miranda, H., Simão, R., Moreira, L.M., Souza, R.A. de, Souza, J.A.A. de, Salles, B.F. de 

and Willardson, J.M. (2009) Effect of rest interval length on the volume completed 

during upper body resistance exercise. Journal of sports science & medicine 8(3), 

388–392. 

Mitter, B., Csapo, R., Bauer, P. and Tschan, H. (2022a) Reproducibility of strength perfor-

mance and strength-endurance profiles: A test-retest study. PloS one 17(5), 

e0268074. 

Mitter, B., Zhang, L., Bauer, P., Baca, A. and Tschan, H. (2022b) Modeling the Relationship 

between Load and Repetitions to Failure in Resistance Training: A Bayesian Anal-

ysis. European journal of sport science, 1–26. 

Morán-Navarro, R., Pérez, C.E., Mora-Rodríguez, R., La Cruz-Sánchez, E. de, González-

Badillo, J.J., Sánchez-Medina, L. and Pallarés, J.G. (2017) Time course of recovery 



 

108 

following resistance training leading or not to failure. European journal of applied 

physiology 117(12), 2387–2399. 

Morton, R.H., Redstone, M.D. and Laing, D.J. (2014) The Critical Power Concept and 

Bench Press: Modeling 1RM and Repetitions to Failure. International journal of ex-

ercise science 7(2), 152–160. 

O'Connor, R., Simmons, J. and O'Shea, P. (1989) Weight training today. St. Paul: West. 

Pelland, J.C., Robinson, Z.P., Remmert, J.F., Cerminaro, R.M., Benitez, B., John, T.A., 

Helms, E.R. and Zourdos, M.C. (2022) Methods for Controlling and Reporting Re-

sistance Training Proximity to Failure: Current Issues and Future Directions. Sports 

medicine (Auckland, N.Z.). 

Ratamess, N.A., Chiarello, C.M., Sacco, A.J., Hoffman, J.R., Faigenbaum, A.D., Ross, R.E. 

and Kang, J. (2012) The effects of rest interval length on acute bench press perfor-

mance: the influence of gender and muscle strength. Journal of Strength and Con-

ditioning Research 26(7), 1817–1826. 

Richens, B. and Cleather, D.J. (2014) The relationship between the number of repetitions 

performed at given intensities is different in endurance and strength trained athletes. 

Biology of sport 31(2), 157–161. 

Richmond, S.R. and Godard, M.P. (2004) The effects of varied rest periods between sets 

to failure using the bench press in recreationally trained men. Journal of Strength 

and Conditioning Research 18(4), 846–849. 

Rohatgi, A. (2020) WebPlotDigitizer. Pacifica, CA, USA. 

Salles, B.F. de, Simão, R., Miranda, F., Da Novaes, J.S., Lemos, A. and Willardson, J.M. 

(2009) Rest interval between sets in strength training. Sports medicine (Auckland, 

N.Z.) 39(9), 765–777. 

Santos, W.D.N.D., Vieira, C.A., Bottaro, M., Nunes, V.A., Ramirez-Campillo, R., Steele, J., 

Fisher, J.P. and Gentil, P. (2021) Resistance Training Performed to Failure or Not 

to Failure Results in Similar Total Volume, but With Different Fatigue and Discomfort 

Levels. Journal of strength and conditioning research 35(5), 1372–1379. 

Senna, G., Salles, B.F., Prestes, J., Mello, R.A. and Roberto, S. (2009) Influence of two 

different rest interval lengths in resistance training sessions for upper and lower 

body. Journal of sports science & medicine 8(2), 197–202. 

Shimano, T., Kraemer, W.J., Spiering, B.A., Volek, J.S., Hatfield, D.L., Silvestre, R., 

Vingren, J.L., Fragala, M.S., Maresh, C.M., Fleck, S.J., Newton, R.U., Spreuwen-

berg, L.P.B. and Häkkinen, K. (2006) Relationship between the number of repeti-

tions and selected percentages of one repetition maximum in free weight exercises 

in trained and untrained men. Journal of Strength and Conditioning Research 20(4), 

819–823. 



 

109 

Steele, J., Fisher, J., Giessing, J. and Gentil, P. (2017) Clarity in reporting terminology and 

definitions of set endpoints in resistance training. Muscle & nerve 56(3), 368–374. 

Suchomel, T.J., Nimphius, S., Bellon, C.R., Hornsby, W.G. and Stone, M.H. (2021) Training 

for Muscular Strength: Methods for Monitoring and Adjusting Training Intensity. 

Sports medicine (Auckland, N.Z.) 51(10), 2051–2066. 

Triska, C., Hopker, J., Wessner, B., Reif, A., Tschan, H. and Karsten, B. (2021) A 30-Min 

Rest Protocol Does Not Affect W', Critical Power, and Systemic Response. Medicine 

and science in sports and exercise 53(2), 404–412. 

Welday, J. (1988) Should you check for strength with periodic max lifts? Scholastic Coach 

57(9), 49–68. 

Zając, A., Chalimoniuk, M., Maszczyk, A., Gołaś, A. and Lngfort, J. (2015) Central and Pe-

ripheral Fatigue During Resistance Exercise - A Critical Review. Journal of human 

kinetics 49, 159–169. 

 

  



 

110 

3 Discussion 

3.1 Summary 

The present thesis explored the strength-endurance relationship to provide practitioners 

with a valid methodological approach for assessing strength-endurance profiles. For this 

purpose, we first investigated whether strength-endurance models, which account for indi-

vidual trends, provide a superior alternative to complete-pooling models, which generalize 

the strength-endurance relationship across subjects. We then compared different mathe-

matical functions based on their validity (i.e., model fit and predictive accuracy), simplicity 

(i.e., number of model parameters), and robustness across test-retest trials to determine 

which function(s) yield the most appropriate representation of the strength-endurance rela-

tionship. Lastly, we compared two protocols for assessing strength-endurance data to de-

termine whether RTF tests yield different results when performed in a single session (i.e., 

single-visit protocol) or distributed across multiple days (i.e., multi-visit protocol). Data ac-

quired during the multi-visit protocol of the final experiment were further used to replicate 

the analysis of different mathematical functions from the first experiment and, therefore, 

challenge the robustness of those findings in a new sample. All research questions were 

addressed in variants of the bench press exercise.  

 

3.1.1 Modeling strength endurance 

As demonstrated in publication #1, evidence supports the strength-endurance relationship 

following individual trends when loads are normalized to the individual 1-RM load (Mitter, 

Zhang, et al., 2022). When modeling strength endurance with respect to individual trends 

(i.e., using a multilevel approach), the models accounted for the heteroscedasticity that re-

sults from normalizing load. Consequently, the individual modeling approach yielded a bet-

ter model fit and predictive accuracy than the commonly proposed complete-pooling ap-

proach, especially at lower relative loads.  

When comparing the capability of different functions to model the association between rel-

ative load and RTF, publication #1 provides strong evidence that curvilinear functions are 

more appropriate than a linear regression model (Mitter, Zhang, et al., 2022). While these 

findings were based on a methodological approach that applied a single-visit protocol to 

determine RTF, the replication analysis presented in publication #3 provided additional sup-

port for this conclusion under implementing a multi-visit protocol and introducing absolute 

load instead of relative load as a dependent variable (Mitter, Raidl, et al., 2022). While the 

original analysis in publication #1 only featured four functions (i.e., Lin, Ex2, Ex3, and Crt), 



 

111 

the replication analysis presented in publication #3 further included a reciprocal regression 

model (Rec). To the author’s knowledge, this model has not been explicitly covered in ex-

perimental research thus far and can only be reformulated from particular 1-RM prediction 

equations with unclear scientific background (see section 1.2.2.1). However, the inclusion 

of Rec in the replication analysis yielded an interesting methodological step to challenge 

the ranking of Ex2. Indeed, in publication #1, Ex2 was considered the most appropriate 

model because it relies on fewer parameters than Ex3 and Crt. As such, adding another 

curvilinear function with an equal number of parameters to the list of investigated models 

was considered a valuable analytical improvement. Interestingly, Rec yielded a similar 

model fit and predictive accuracy compared to Ex2, indicating that it is a valid alternative to 

model the individual strength-endurance relationship.  

The relevance of a specific model for application in a practical setting is not solely deter-

mined by its capacity to fit and predict data. It is also determined by the robustness of pa-

rameter estimates during a short time frame when changes in observed scores are ex-

pected to be predominantly the result of biological noise. Publication #2 investigated this 

using a test-retest study design and demonstrated that models including three parameters 

(i.e., Ex3 and Crt) succumbed to large variations in parameter estimates, even though 

changes in performance were only trivial (Mitter, Csapo, et al., 2022). On the other hand, 

models applying two parameters (i.e., Lin and Ex2) resulted in more robust estimates, as 

indicated by the relative and standardized magnitude of change effects. It can be hypothe-

sized that while Ex3 and Crt feature high flexibility to fit the observed data, there may be a 

broad spectrum of parameter combinations resulting in an equivalent model fit for the range 

of observed data. This notion is illustrated in Figure 9, which shows that considerable dif-

ferences in parameter estimates for Crt may still yield similar trends for a given segment of 

the strength-endurance continuum. Hence, it may be assumed that Ex3 and Crt introduce 

a structural complexity that impedes the estimation of model parameters in the load range 

of 70% to 100% 1-RM. Also, the flexibility of Ex3 and Crt to fit data may promote overfitting 

of the biological noise and, thus, result in non-robust parameter estimates across test-retest 

trials.  

Importantly, publication #2 did not include the reciprocal regression model, as it focused on 

functions explicitly proposed in previous research. However, an unpublished retrospective 

reanalysis of Rec applying the same data and analytical workflow from publication #2 re-

vealed that the function yields similar robustness compared to Lin and Ex2. A summary of 

the robustness analysis of Rec is available in Table 4.  
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Figure 9. The critical load model fitted with two heterogeneous sets of parameters. 

Panel B displays a close-view segment of panel A. The black marks display ob-

served data. The solid line displays a model fit with parameters L’ = 6045, k = -

41.1, and CL = -38.1, whereas the dashed line displays a model fit with parameters 

L’ = 3188, k = -28.6, and CL = -2.9. The light grey dotted lines indicate the coordi-

nates y = 0 and x = 0. RTF, repetitions performed to momentary failure.  

 

 

Table 4. Summary of posterior predictive distributions of relative and standardized change 

effects (supplemental analysis to publication #2) 

Model 
Change 

effect 

Relative 

magnitude (%) * 

Standardized 

magnitude ** 
p (Δxi ∈ [-0.6, 0.6] | data) ** 

Rec Δa -0.6 [-2.2, 1.2] -0.9 [-8.18, 4.55] 26.7 % 

 Δb -4.8 [-19.4, 8.4] -0.22 [-0.83, 0.38] 84.0 % 

Posterior predictive distributions are summarized using the Maximum a Posteriori estimate 

and 90% Highest Density Interval. 

*, change effects are expressed relative to the group-level mean of the associated model pa-

rameter at T1. 

**, change effects are standardized to the group-level standard deviation of the associated 

model parameter at T1.  

Rec, reciprocal regression model; p (Δxi ∈ [-0.6, 0.6] | data), probability of the standardized 

change effect falling within the threshold for acceptable differences given the data. 
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In summary, Ex2 and Rec yielded a valid representation of the strength-endurance relation-

ship, robust parameter estimates, and a simple mathematical structure compared to Ex3 

and Crt. Figure 10 displays the investigated functions when mapped qualitatively to the 

discussed criteria.  

 

 

Figure 10. Summary of the comparison between the investigated model functions. 

Model validity was evaluated based on model fit and predictive accuracy. Model 

robustness was evaluated based on changes in model parameters across test-

retest trials. Model simplicity was evaluated based on the number of model param-

eters. Crt, critical load model; Ex2, exponential model (2 parameters); Ex3, expo-

nential model (3 parameters); Lin, linear model; Rec, reciprocal model.  

 

 

Lin 

Ex2 

Rec 

Ex3 

Crt 
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3.1.2 Data acquisition for strength-endurance profiles 

Publication #3 provides evidence that strength-endurance performance is substantially im-

paired in later trials when RTF are assessed at 90%, 80%, and 70% 1-RM within a single 

session, even when a long recovery period is applied between trials (Mitter, Raidl, et al., 

2022). Although the fixed order of loads applied in the SV protocol does not enable any 

conclusions about alternative single-visit designs, using a different order would likely have 

resulted in a similar or even greater impairment on RTF performance, given that fatigue is 

typically more pronounced after sets performed to failure at lower relative loads (Salles et 

al., 2009; Sánchez-Medina & González-Badillo, 2011). Overall, it can be concluded that, on 

average, distributing RTF tests across multiple days yields less biased data for the compu-

tation of strength-endurance profiles. Thus, the application of a multi-visit protocol for 

strength-endurance data acquisition is warranted.  

 

3.2 Practical Applications 

The relationship between load and the number of RTF on any exercise can be quantified 

by determining an individual’s strength-endurance profile, which can be established based 

on the absolute (kg, lbs) or the relative (%1-RM) load applied. Based on these profiles, 

practitioners and researchers can prescribe and control set-repetition schemes with respect 

to the intensity of effort, and describe changes in strength endurance across a broad range 

of loads. Unfortunately, the mathematical knowledge underlying the modeling of such pro-

files typically hinders the application of these concepts to the daily practice of professionals. 

In that regard, practitioners can now conveniently determine individual strength-endurance 

profiles through a user-friendly web application developed alongside the current dissertation 

project (Mitter, 2022). The app is freely accessible through the link “https://strength-and-

conditioning-toolbox.shinyapps.io/Strength-Endurance_Profile/”, previously made available 

in Publication #2 (Mitter, Csapo, et al., 2022). We expect this to facilitate the use and dis-

semination of strength-endurance profiling within the field of resistance training. 

Ex2 and Rec have been identified as the best approximations of the strength-endurance 

relationship among investigated models. These model functions can be easily fitted as bi-

variate linear regression models after applying the appropriate transformation to load as the 

dependent variable. Specifically, a reciprocal transformation for Rec and a natural log trans-

formation for Ex2 is necessary, as detailed in section 8.1, Appendix A. In either case, it is 

essential to note that at least three RTF tests must be conducted for an error term to be 

established.  

 

https://strength-and-conditioning-toolbox.shinyapps.io/Strength-Endurance_Profile/
https://strength-and-conditioning-toolbox.shinyapps.io/Strength-Endurance_Profile/
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3.2.1 Strength-endurance profiles as descriptive tools 

Absolute strength-endurance profiles can be used as a comprehensive description of an 

athlete’s fatiguability across a broad range of loads. Thus, they may be applied to quantify 

whether systematic changes in local muscular endurance are consistent across various 

loads or if changes have been more pronounced at either end of the spectrum. For the 

exponential 2-parameters model investigated, the magnitude of consistent changes can be 

evaluated based on changes in the intercept parameter a, whereas changes in the curva-

ture parameter b mark specific changes. For example, considering an absolute strength-

endurance profile with estimated parameters of {a = 102, b = -0.03} at baseline, a training-

induced change of the intercept by ten units to {a = 112} with an unchanged curvature b 

would indicate that the respective individual improved their local muscular endurance con-

sistently by about 3 repetitions across the load spectrum (Figure 11).  

 

 

Figure 11. Quantifying consistent changes in strength endurance using model parameters. 

Strength-endurance profiles were calculated using the exponential 2-parameters function. 

The solid black line represents a profile with parameters {a = 102, b = -0.03}. The dashed 

black line represents a profile with an increased intercept a = 112 but an equivalent magni-

tude of b. The dashed grey line represents the load axis at RTF = 0. The solid grey line 

represents the change in strength endurance (ΔRTF ≈ 3.12 repetitions), which is consistent 

across the full spectrum. Δa, change in model intercept; RTF, repetitions performed to mo-

mentary failure.  

 

Δa 

ΔRTF 
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The formula used to estimate this consistent change in strength endurance (ΔRTF) based 

on the value of the model parameters at baseline (a, b) and the corresponding change in 

the intercept (Δa) can be mathematically expressed as follows:  

∆𝑅𝑇𝐹 =
1

𝑏
𝑙𝑛 (

𝑎

𝑎 + ∆𝑎
) (32) 

A derivation of eq. 32 is provided in section 8.3 (Appendix C).  

 

3.2.2 Strength-endurance profiles as predictive tools 

Strength-endurance profiles can also be used to predict the load associated with a given 

repetition maximum in rested conditions. In this case, exercise- and subject-specific repeti-

tion maximum tables can be generated using a series of RTF values in the appropriate 

relative strength-endurance profile predictive equation. This feature is also included in the 

openly accessible web application and can be easily determined using the results of three 

different RTF tests (Mitter, 2022). However, generated tables only provide point predictions 

based on the estimated model, and thus, observed values may deviate from predicted ones 

due to the uncertainty of estimates and biological noise. It can also be expected that if 

values are extrapolated to loads distant from the ones on which the model is based on, such 

predictions will be less precise, as illustrated in Figure 4.D (Hahn, 1977). Hence, practition-

ers should intentionally apply the RTF tests at loads in the range intended for predictions.  

As described in section 1.2.2.2, predictions can be further applied to normalize effort using 

methodological approaches such as RISR or REv. In the present thesis, we identified the 

linear regression model as an inadequate approximation to the strength-endurance rela-

tionship in the range of 70% to 100% 1-RM. As a consequence, the formula for REv pro-

posed in eq. 31 is likely biased. Here, we propose an adaptation to the original REv equation 

based on individual strength-endurance profiles using Ex2 as a model function:  

𝑅𝐸𝑣 = 𝜑 =
|𝑂𝐴⃗⃗⃗⃗  ⃗|

|𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥|
=
𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑙𝑖𝑚

=
𝑛𝑎
𝑛𝑙𝑖𝑚

= −𝑏 𝑛𝑎  𝑊0 (−
𝑎 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

)
−1

 (33) 

In eq. 33, na and loada represent the number of repetitions performed and the load used on 

a given set, respectively. Further, a and b represent the parameters of the exponential 

strength-endurance profile, and W0(x) represents the Lambert W function for x ≥ 0 (principal 

branch). W0(x) can be calculated using various open-source solutions, such as the lam-

bertWp function from the R package pracma. The derivation of eq. 33 is available in section 

8.4 (Appendix D).  
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Alternatively, those preferring Rec as a model function for strength-endurance profiles can 

calculate REv according to the following equation:  

𝑅𝐸𝑣 = 𝜑 =
|𝑂𝐴⃗⃗⃗⃗  ⃗|

|𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥|
=
𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑙𝑖𝑚

=
𝑛𝑎
𝑛𝑙𝑖𝑚

= 2 𝑏 𝑛𝑎 (√𝑎
2 +

4 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

− 𝑎)

−1

 (34) 

The derivation of eq. 34 is available in section 8.5 (Appendix E). To facilitate the computa-

tion of REv based on strength-endurance profiles for practitioners, developers of mobile 

applications for resistance training documentation should consider to create machine learn-

ing algorithms that autonomously compute and adapt strength-endurance profiles based on 

training log data, and incorporate respective REv equations as a monitoring feature.  

 

3.3 Limitations 

The experimental procedures conducted in this thesis are not exempt from limitations. Alt-

hough most of them have already been addressed in the published manuscripts, certain 

limitations must also be acknowledged here. Thus, the following sections will provide an 

overview of these limitations and discuss their impact on the main findings.  

 

3.3.1 Participants 

All experiments were conducted with samples of resistance-trained individuals. The respec-

tive inclusion criteria that determined this (i.e., minimal required training experience and 

minimal 1-RM performance in the bench press) were implemented for two reasons. First, it 

was considered that experienced participants would be less susceptible to injury during sets 

performed to momentary failure, as practice time has previously been shown to be inversely 

associated with injury rate (Kemler et al., 2022; Sprey et al., 2016). Moreover, it was as-

sumed that resistance-trained individuals would experience less systematic performance 

changes over a test-retest protocol due to being more familiarized with the exercise tech-

nique (Cronin & Henderson, 2004; Ritti-Dias et al., 2011). This experience may be consid-

ered a prerequisite for assessing strength-endurance profiles because they assume an ab-

sence of systematic changes during data acquisition to describe a cross-sectional perfor-

mance state. Consequently, the findings of the present thesis may not directly apply to dif-

ferent populations, including untrained individuals. Practitioners and researchers should be 

wary of potential bias resulting from systematic changes in performance during data acqui-

sition when estimating strength-endurance profiles for novice lifters.  
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3.3.2 Exercise 

Every experiment designed for the present thesis included a variant of the free-weight 

bench press exercise, mainly because it represents a compound exercise that, compared 

to other resistance exercises, facilitates the precise determination of a set endpoint due to 

momentary failure. For reference, potential difficulties in identifying the point of momentary 

failure have been discussed for different exercises in section 1.1.2. Publications #1 and #2 

applied a variant of the bench press occasionally labeled “pin press”, which involves a dead 

stop at the end of the eccentric movement phase, where the barbell briefly rests on two 

safety pins. Subsequently, the concentric movement phase was initiated upon a verbal com-

mand provided by a staff member. These restrictions were applied to cancel out expected 

irregularities in the range of motion, to exclude a contribution of the stretch-shortening cycle 

or “bouncing” of the barbell as a source of variance, and to provide participants with a safe 

experimental environment during sets performed to failure. Publication #3 applied the touch-

and-go bench press (i.e., without verbal commands) as an alternative exercise variant that 

allows participants to use the stretch-shortening cycle. Regulations about the exercise tech-

nique were loosened for this final experiment to investigate whether recent findings hold 

under less restrictive conditions.  

Notably, the findings of the present dissertation project do not necessarily hold for other 

exercises or movement techniques. This includes exercises with a fixed movement cadence 

controlled by a metronome, which has commonly been considered an essential factor for 

standardization in previous research on strength-endurance modeling (Arakelian et al., 

2017; Dinyer, Byrd, Vesotsky, Succi, & Bergstrom, 2019; R. H. Morton et al., 2014). How-

ever, in the author’s opinion, this standardization measure does not reflect typical resistance 

training practices.  

 

3.3.3 Load spectrum 

All experiments were completed at loads ranging from 70% to 100% 1-RM. This spectrum 

was selected for two main reasons. First, it covers most of the load range recommended in 

the American College of Sports Medicine (ACSM) position stand to promote muscle hyper-

trophy and strength adaptations (Ratamess et al., 2009). Second, it was assumed that in-

cluding lower relative loads in the single-visit protocol would have induced greater fatigue 

levels, resulting in more biased parameter estimates. This assumption was based on an 

unpublished pilot study including nine resistance-trained men that used the same single-

visit protocol of publication #1, with an additional 60% 1-RM load at the end of it.  



 

119 

The findings of the present thesis on model validity and the bias inherent to the single-visit 

protocol do not necessarily apply to other load ranges. It may be assumed that when con-

sidering a full spectrum of external loads between 0% and 100% 1-RM, the relationship will 

likely continue a curvilinear trend, as proposed by investigations including exceptionally low 

loads around 20% to 30% 1-RM (Arakelian et al., 2017; Desgorces et al., 2010). However, 

it cannot be ruled out that functions other than Ex2 and Rec provide higher predictive accu-

racy and more robust parameter estimates across larger load spectrums. In addition, Ex2 

and Rec are characterized by a fixed asymptote at a relative load of 0% 1-RM, which may 

be considered an inadequate model restriction at the lower-load end. On the other hand, 

Ex3 and Crt express the load asymptote as a parameter in the model function (i.e., c in Ex3; 

and CL in Crt). Presuming that these parameters are not truncated during model fitting, this 

renders the lower-load end non-restrictive for Ex3 and Crt and allows for an actual intercept 

with the RTF axis. Nevertheless, the practical relevance for model accuracy at the excep-

tionally low load range could be questioned, especially considering that this range may be 

prone to a substantially lower absolute test-retest agreement in RTF completed due to a 

longer set duration.  

 

3.3.4 Bias in the single-visit protocol 

As shown in publication #3, applying a single-visit protocol to assess RTF at 90%, 80%, 

and 70% 1-RM in the bench press likely biases the result of the 70% 1-RM trial. Although 

the tested variant of the bench press differs slightly from that used in publications #1 and 

#2, the main findings of publication #3 challenge the validity of the results in the two other 

studies. However, as evidenced in the replication analysis performed in publication #3, ap-

plying a multi-visit protocol yielded comparable results to publication #1. Therefore, the po-

tential bias observed in the data has not substantially affected the ranking of model perfor-

mance.  

The inherent bias of the single-visit protocol might have also influenced the findings from 

Publication #2. Presuming that biological noise is proportional to performance at a robust 

ratio, the reported statistics for absolute test-retest consistency of RTF completed at 70% 

1-RM may not have represented biological variability under a proper rested condition state. 

However, whether this potential bias substantially affected test-retest agreement in the in-

vestigated load range may be questioned. As shown in publication #2, the within-subject 

coefficient of variation of RTF at 80% and 70% 1-RM was estimated at about 10% (Mitter, 

Csapo, et al., 2022). Following the results of publication #3, it may be suggested that the 

single-visit protocol yielded an average negative bias of about two repetitions in the 70% 1-
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RM trial (Mitter, Raidl, et al., 2022). Therefore, the estimated standard error of measurement 

at 70% 1-RM might only have been affected by a magnitude of about 0.2 repetitions. Simi-

larly, the results reported on the robustness of model parameters may be predominantly 

attributed to the mathematical properties of the investigated functions rather than small de-

viations in observed biological noise. To identify whether conclusions made in publication 

#2 are predominantly ascribed to the use of a single-visit protocol in the experimental de-

sign, further research is needed.  

 

3.4 Outlook 

Research on the individual strength-endurance relationship is still in its early stages, leaving 

numerous questions to be addressed in future investigations. The present section will dis-

cuss two main objectives that are of interest in terms of practical relevance.  

 

3.4.1 Replication 

Future studies should evaluate the performance and robustness of different model functions 

in multiple exercises to identify whether the strength-endurance relationship can be univer-

sally modeled with a single function. This includes isolated exercises and other popular 

compound exercises, such as the back squat and the deadlift. Such investigations may also 

consider deploying additional curvilinear functions. Recently, it has been suggested that 

omitting the intercept and forcing the function to pass through the 1-RM may be a possible 

method to simplify functions which express an intercept parameter (Jovanovic, 2022). When 

expressing load relative to the 1-RM, this can be achieved by setting RTF to 1, load to 100, 

solving the resulting equation for the intercept parameter, and plugging it into the original 

bivariate function. The computational details of this process are illustrated below using the 

2-parameters exponential model (Eq. 15) as an example:  

 𝑙𝑜𝑎𝑑 = 𝑎 𝑒𝑏 𝑅𝑇𝐹 | 𝑙𝑜𝑎𝑑 = 100; 𝑅𝑇𝐹 = 1  

 100 = 𝑎 𝑒𝑏  | ÷ 𝑒𝑏  

 100

𝑒𝑏
= 𝑎 | 𝑝𝑙𝑢𝑔 𝑖𝑛 𝐸𝑞. 15  

 
𝑙𝑜𝑎𝑑 =

100

𝑒𝑏
 𝑒𝑏 𝑅𝑇𝐹 | 𝑎𝑝𝑝𝑙𝑦 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑢𝑙𝑒  

 𝑙𝑜𝑎𝑑 = 100 𝑒𝑏 𝑅𝑇𝐹−𝑏 | 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝑏  

 𝑙𝑜𝑎𝑑 = 100 𝑒𝑏 (𝑅𝑇𝐹−1)  (35) 
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As portrayed in eq. 35 and illustrated in Figure 12, the simplified model features only a 

single parameter b and will pass through the 1-RM load irrespective of the parameter value. 

It should be noted that the model assumes prior knowledge about the 1-RM load, expressed 

by the value 100 in eq. 35 (i.e., 100% 1-RM). It further assumes that the information about 

the 1-RM load is free of error and bias. While the 1-RM test has repeatedly been shown to 

be reliable (Grgic, Lazinica, et al., 2020), this assumption is somewhat unrealistic, especially 

when indirect methods are used to predict the 1-RM of compound exercises in well-trained 

individuals (Mitter, 2018; Mitter, Bauer, & Tschan, 2021; Weakley et al., 2021). Furthermore, 

the reduced number of model parameters negatively affects model flexibility because it re-

stricts the potential shape the function may take. Future research should investigate 

whether these restrictive properties of simplified functions substantially affect model validity 

and robustness.  

 

 

Figure 12. Simplified single-parameter version of the exponential function (eq. 35). 

The displayed models are based on the 2-parameter exponential model. The inter-

cept parameter was omitted, and the function was forced to pass through the 1-RM 

load (i.e., 100% 1-RM). The solid lines display the model function, assuming curva-

ture parameters b equal to -0.04 (top), -0.05 (middle), and -0,06 (bottom). The 

dashed grey lines mark the 1-RM load. 1-RM, one-repetition maximum; RTF, repe-

titions performed to momentary failure.  

 

3.4.2 Inter-set fatigue 

It is essential to acknowledge that strength-endurance profiles are conceptually designed 

to portray a cross-sectional state of an individual’s performance limit. Thus, they assume a 
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relationship between load and RTF under rested conditions. However, over the course of 

multiple consecutive sets, fatigue may arise and potentially alter this relationship. To provide 

accurate predictions across subsequent sets, then, inter-set fatigue must be accounted for 

within models. Therefore, future research should investigate the effects of inter-set fatigue 

on the individual strength-endurance relationship. For example, it could be investigated 

whether the strength-endurance relationship experiences a constant decay (i.e., a parallel 

shift) due to fatigue by applying a standardized fatiguing set prior to the RTF test used for 

profile computation. It might also be interesting to investigate the possibility of modeling 

inter-set fatigue as a function of the applied load, the number of repetitions, and rest dura-

tion. However, this type of exploratory research would likely require a cross-over study de-

sign with a large number of participants and multiple consecutive sessions for each partici-

pant to account for a variety of different fatiguing conditions. Therefore, it may be valuable 

first to consider further research on single-visit protocols to identify a rest interval at which 

strength endurance has approximately recovered for different loads.  

 

4 Abbreviations 

 

1-RM  One-repetition maximum 

ADP  Adenosine diphosphate 

AMP  Adenosine monophosphate 

ATP  Adenosine triphosphate 

BM  Body mass 

Ca2+  Calcium 

Cl-  Chloride 

Cr  Creatine 

e.g.  Example given 

F  Force 

FI  Fatigue index 

FTI  Force-Time Integral 

H+  Hydrogen 

HFF  High-frequency fatigue 

HDI  Highest density interval 

i.e.  In explanation 

IMP  Inosine monophosphate 

K+  Potassium 
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La  Lactic acid 

LFF  Low-frequency fatigue 

LME  Local muscular endurance 

loada  Applied load 

loadmax  Predicted maximum load 

MCV  Maximum voluntary contraction 

MEP  Motor-evoked potential 

MLSS  Maximum lactate steady state 

MNS  Motor nerve stimulation 

MV  Multi-visit (protocol) 

na  Applied number of repetitions 

nmax  Predicted maximum number of repetitions 

n-RM  n-repetition maximum 

Na+  Sodium 

NH3  Ammonia 

P  Power 

PA  Pennation angle 

PCr  Phosphocreatine 

Pi  Inorganic phosphate 

RCP  Respiratory compensation point 

RE  Relative effort 

REv  Vectorized relative effort 

RISR  Relative intensity of set-repetition best 

RIR  Repetitions in reserve 

ROS  Reactive oxygen species 

RTF  Number of repetitions to momentary failure 

SE  Strength endurance 

SEM  Standard error of measurement 

SV  Single-visit (protocol) 

syn  Synonymously 

tlim  Time to exhaustion 

TMS  Transcranial magnetic stimulation 

VA  Voluntary activation 

W  Work 
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8 Appendices 

8.1 Appendix A: Derivation of eq. 15 

The 2-parameters exponential regression model (eq. 15) can be derived from a linear re-

gression model (eq. 11) by applying a natural log transformation to load.  

 ln(𝑙𝑜𝑎𝑑) = 𝑎′ + 𝑏′ 𝑅𝑇𝐹 

𝑙𝑜𝑎𝑑 = 𝑒𝑎
′+𝑏′ 𝑅𝑇𝐹 

𝑙𝑜𝑎𝑑 =  𝑒𝑎
′
 𝑒𝑏

′ 𝑅𝑇𝐹 

𝑙𝑜𝑎𝑑 = 𝑎 𝑒𝑏 𝑅𝑇𝐹 

 | 𝑒 

 | 𝑎𝑝𝑝𝑙𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑟𝑢𝑙𝑒 

 | 𝑒𝑎
′
= 𝑎; 𝑏′ = 𝑏  

 

Therefore, when estimating model parameters based on a linear model with load being log-

transformed, caution must be taken to recover the intercept parameter a when applying the 

exponential notation of the equation.  

 

8.2 Appendix B: Derivation of eq. 29 

The derivation of 𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥 (eq. 29) requires 𝑂𝐴⃗⃗⃗⃗  ⃗ to be expressed as a linear function (eq. 27), 

and the strength-endurance relationship, as expressed by (Adams & Beam, 2014):  

 𝑙𝑜𝑎𝑑 = 1 − 0.025 𝑛   

The intersection can then be calculated by equalizing the two functions as follows:  

 𝑙𝑜𝑎𝑑𝑎
𝑛𝑎

 𝑛𝑙𝑖𝑚 = 1 − 0.025 𝑛𝑙𝑖𝑚  |  × 𝑛𝑎  

 𝑙𝑜𝑎𝑑𝑎  𝑛𝑙𝑖𝑚 = 𝑛𝑎 − 0.025 𝑛𝑙𝑖𝑚 𝑛𝑎  | + 0.025 𝑛𝑙𝑖𝑚 𝑛𝑎  

 𝑛𝑙𝑖𝑚(𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎) = 𝑛𝑎  | ÷ (𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎)  

 𝑛𝑙𝑖𝑚 =
𝑛𝑎

𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎
  |  𝑝𝑙𝑢𝑔 𝑖𝑛 𝑒𝑞. 27  

 
𝑙𝑜𝑎𝑑𝑙𝑖𝑚 =

𝑙𝑜𝑎𝑑𝑎
𝑛𝑎

 
𝑛𝑎

𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎
  |  𝑠𝑜𝑙𝑣𝑒  

 
𝑙𝑜𝑎𝑑𝑙𝑖𝑚 =

𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎

   

 

𝑂𝑆⃗⃗⃗⃗  ⃗𝑚𝑎𝑥 = (
𝑙𝑜𝑎𝑑𝑙𝑖𝑚
𝑛𝑙𝑖𝑚

) =

(

 

𝑙𝑜𝑎𝑑𝑎
𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎

𝑛𝑎
𝑙𝑜𝑎𝑑𝑎 + 0.025 𝑛𝑎)

   (29) 

 



 

152 

8.3 Appendix C: Derivation of eq. 32 

Eq. 32 can be derived from the 2-parameters exponential model function (eq. 15) by as-

suming a change in the number of RTF (ΔRTF) and intercept (Δa), while the curvature 

parameter b is assumed to remain unchanged:  

 𝑙𝑜𝑎𝑑 = 𝑎 𝑒𝑏 𝑅𝑇𝐹 | 𝑎𝑑𝑑 ∆𝑎 𝑎𝑛𝑑 ∆𝑅𝑇𝐹  

 𝑙𝑜𝑎𝑑 = (𝑎 + ∆𝑎) 𝑒𝑏 (𝑅𝑇𝐹+∆𝑅𝑇𝐹) | 𝑙𝑛()  

 𝑙𝑛(𝑙𝑜𝑎𝑑) = 𝑙𝑛(𝑎 + ∆𝑎) + 𝑏 (𝑅𝑇𝐹 + ∆𝑅𝑇𝐹) |  − 𝑙𝑛(𝑎 + ∆𝑎)  

 𝑙𝑛(𝑙𝑜𝑎𝑑) − 𝑙𝑛(𝑎 + ∆𝑎) = 𝑏 (𝑅𝑇𝐹 + ∆𝑅𝑇𝐹) | 𝑎𝑝𝑝𝑙𝑦 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑢𝑙𝑒  

 
𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎 + ∆𝑎
) = 𝑏 (𝑅𝑇𝐹 + ∆𝑅𝑇𝐹) |  ÷ 𝑏  

 
𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎 + ∆𝑎
)
1

𝑏
= 𝑅𝑇𝐹 + ∆𝑅𝑇𝐹 | − 𝑅𝑇𝐹  

 
𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎 + ∆𝑎
)
1

𝑏
− 𝑅𝑇𝐹 = ∆𝑅𝑇𝐹 | 𝑠𝑜𝑙𝑣𝑒 𝑒𝑞. 15 𝑓𝑜𝑟 𝑅𝑇𝐹   

 
𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎 + ∆𝑎
)
1

𝑏
− 𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎
)
1

𝑏
= ∆𝑅𝑇𝐹 | 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 

1

𝑏
  

 1

𝑏
(𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎 + ∆𝑎
) − 𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎
)) = ∆𝑅𝑇𝐹 | 𝑎𝑝𝑝𝑙𝑦 𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑟𝑢𝑙𝑒  

 1

𝑏
𝑙𝑛 (

𝑙𝑜𝑎𝑑

𝑎 + ∆𝑎
   
𝑎

𝑙𝑜𝑎𝑑
) = ∆𝑅𝑇𝐹 | 𝑠𝑜𝑙𝑣𝑒  

 1

𝑏
𝑙𝑛 (

𝑎

𝑎 + ∆𝑎
) = ∆𝑅𝑇𝐹  (32) 

 

8.4 Appendix D: Derivation of eq. 33 

Similar to eq. 31, eq. 33 is the result of intersecting 𝑂𝐴⃗⃗⃗⃗  ⃗ with the strength-endurance model, 

which in this case is an unspecified 2-parameter exponential function (eq. 15). To solve the 

equation for nlim, it has to be rewritten in Lambert form 𝑓(𝑧) = 𝑧 𝑒𝑧. Assuming that z is always 

positive, the equation can then be solved using the principal branch of the Lambert W func-

tion (W0).  

 𝑙𝑜𝑎𝑑𝑎
𝑛𝑎

 𝑛𝑙𝑖𝑚 = 𝑎 𝑒
𝑏 𝑛𝑙𝑖𝑚  | × 𝑛𝑎    |  × (𝑒

𝑏 𝑛𝑙𝑖𝑚)−1  

 𝑙𝑜𝑎𝑑𝑎  𝑛𝑙𝑖𝑚(𝑒
𝑏 𝑛𝑙𝑖𝑚)−1 =  𝑎 𝑛𝑎  | 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒:−𝑏 𝑛𝑙𝑖𝑚 = 𝑧  
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 𝑙𝑜𝑎𝑑𝑎  (−
𝑧

𝑏
) 𝑒𝑧 =  𝑎 𝑛𝑎  |÷ 𝑙𝑜𝑎𝑑𝑎    | × (−𝑏)  

 
𝑧 𝑒𝑧 = −

𝑎 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

  |  𝑎𝑝𝑝𝑙𝑦 𝐿𝑎𝑚𝑏𝑒𝑟𝑡 𝑊0  

 
𝑧 = 𝑊0 (−

𝑎 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

)  | 𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑒: 𝑧 = −𝑏 𝑛𝑙𝑖𝑚  

 
−𝑏 𝑛𝑙𝑖𝑚 = 𝑊0 (−

𝑎 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

)  |  ÷ (−𝑏)  

 
𝑛𝑙𝑖𝑚 = −

1

𝑏
 𝑊0 (−

𝑎 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

)  | 𝑎𝑝𝑝𝑙𝑦 𝑡𝑜 𝑅𝐸𝑣 =
𝑛𝑎
𝑛𝑙𝑖𝑚

  

 
𝑅𝐸𝑣 =

𝑛𝑎
𝑛𝑙𝑖𝑚

= −𝑏 𝑛𝑎  𝑊0 (−
𝑎 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

)
−1

  (33) 

 

8.5 Appendix E: Derivation of eq. 34 

The derivation of eq. 34 follows the same rationale described in section 8.4, except for the 

strength-endurance profile being expressed as an unspecified reciprocal regression func-

tion (eq. 12). To solve for nlim, a quadratic equation has to be applied. Due to nlim being 

limited to only positive values, the solution of the quadratic equation yielding a negative 

value can be omitted. Thus, as both parameters in the reciprocal regression model can be 

assumed to be positive real numbers, to yield the characteristic curvilinear decay of the 

strength-endurance relationship, the result of the square root of the quadratic equation is 

always expected to be an additive term.  

 𝑙𝑜𝑎𝑑𝑎
𝑛𝑎

 𝑛𝑙𝑖𝑚 =
1

𝑎 + 𝑏 𝑛𝑙𝑖𝑚
  | × (𝑎 + 𝑏 𝑛𝑙𝑖𝑚)   |  × 𝑛𝑎  

 𝑙𝑜𝑎𝑑𝑎  𝑛𝑙𝑖𝑚(𝑎 + 𝑏 𝑛𝑙𝑖𝑚) =  𝑛𝑎  | − 𝑛𝑎  

 𝑏 𝑙𝑜𝑎𝑑𝑎  𝑛𝑙𝑖𝑚
2 + 𝑎 𝑙𝑜𝑎𝑑𝑎  𝑛𝑙𝑖𝑚 − 𝑛𝑎 = 0  | 𝑠𝑜𝑙𝑣𝑒 𝑓𝑜𝑟 𝑛𝑙𝑖𝑚 ∈ ℝ

+  

 

𝑛𝑙𝑖𝑚 =
−𝑎 𝑙𝑜𝑎𝑑𝑎 +√𝑎

2 𝑙𝑜𝑎𝑑𝑎
2 + 4 𝑏 𝑙𝑜𝑎𝑑𝑎  𝑛𝑎

2 𝑏 𝑙𝑜𝑎𝑑𝑎
 
 |  𝑟𝑒𝑑𝑢𝑐𝑒 𝑏𝑦 𝑙𝑜𝑎𝑑𝑎  

 

𝑛𝑙𝑖𝑚 =
−𝑎 + √𝑎2 +

4 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

2 𝑏
 

 | 𝑎𝑝𝑝𝑙𝑦 𝑡𝑜 𝑅𝐸𝑣 =
𝑛𝑎
𝑛𝑙𝑖𝑚

  

 

𝑅𝐸𝑣 =
𝑛𝑎
𝑛𝑙𝑖𝑚

= 2 𝑏 𝑛𝑎 (√𝑎
2 +

4 𝑏 𝑛𝑎
𝑙𝑜𝑎𝑑𝑎

− 𝑎)

−1

  (34) 
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